Write Net cell notation; calculate cell potential.?

enter image source here

2 Answers
Mar 14, 2018

For the cell notation as written:
(a) The anode is #"Pb(s)"#; the cathode is #"Ni(s)"#;
(b) #"Pb(s) + Ni"^"2+""(aq)" → "Pb"^"2+""(aq)" + "Ni(s)"#;
(c) #E_text(cell)^@ = "-0.124 V"#.

Explanation:

(a) Identify the cathode and the anode

The standard convention for cell notation puts the anode on the left and the cathode on the right.

Thus, the anode is #"Pb(s)"# and the cathode is #"Ni(s)"#.

(b) Write the net cell reaction

#color(white)(mmmmlmmmmmmmmmmmmmmmmmmmmll)ul(E^@"/V")#
#"Anode": color(white)(m)"Pb(s)" → "Pb"^"2+""(aq)" + 2"e"^"-";color(white)(mmmmmmml) "+0.126"#
#"Cathode": ul("Ni"^"2+""(aq)" + 2"e"^"-" → "Ni(s)"; color(white)(mmmmmmll))color(white)(mll)ul("-0.25")#
#"Cell":color(white)(mm)"Pb(s)" + "Ni"^"2+""(aq)" → "Pb"^"2+""(aq)" + "Ni(s)"; color(white)(m)"-0.124"#

(c) Calculate the net cell potential

#E_text(cell)^@ = "-0.124 V"#

The cell reaction is not spontaneous as written.

Mar 14, 2018

Here's my approach...


From standard reduction potential tables:

http://highered.mheducation.com/

#"Pb"^(2+)(aq) + 2e^(-) -> "Pb"(s)#, #E_(red)^@ = -"0.13 V"#
#"Ni"^(2+)(aq) + 2e^(-) -> "Ni"(s)#, #E_(red)^@ = -"0.25 V"#

#E_(red)^@# for #"Pb"# is less negative, so #"Pb"^(2+)# is reduced more easily.

Therefore, the cathode involves #"Pb"^(2+)# and #"Pb"(s)#, and the anode involves #"Ni"^(2+)# and #"Ni"(s)#.

We then have:

#"Pb"^(2+)(aq) + cancel(2e^(-)) -> "Pb"(s)#, #E_(red)^@ = -"0.13 V"#
#ul("Ni"(s) -> "Ni"^(2+)(aq) + cancel(2e^(-)))#, #E_(o x)^@ = +"0.25 V"#
#color(blue)("Pb"^(2+)(aq) + "Ni"(s) -> "Ni"^(2+)(aq) + "Pb"(s))#

#color(blue)(E_(cell)^@) = E_(red)^@ + E_(o x)^@#

#= -"0.13 V" + "0.25 V" = color(blue)(+"0.12 V")#

Or, if BOTH are reduction potentials:

#color(blue)(E_(cell)^@) = E_(cathode)^@ - E_(anode)^@#

#= -"0.13 V" - (-"0.25 V") = color(blue)(+"0.12 V")#