What would be the Van’t Hoff factor for a molecule such as I2?
1 Answer
It's not trivial, but it SHOULD just be pretty much
Iodine undergoes the following hydrolysis in water at
#3("I"_2(aq) + "H"_2"O"(l) rightleftharpoons "HOI"(aq) + "I"^(-)(aq) + "H"^(+)(aq))#
#ul(3"HOI"(aq) rightleftharpoons "IO"_3^(-)(aq) + 2"I"^(-)(aq) + 3"H"^(+)(aq))#
#3"I"_2(aq) + 3"H"_2"O"(l) rightleftharpoons "IO"_3^(-)(aq) + 5"I"^(-)(aq) + 6"H"^(+)(aq)#
The reaction has
#2.45 xx 10^(-48) = (["IO"_3^(-)]["I"^(-)]^5["H"^(+)]^6)/(["I"_2]^3)#
#= (x(5x)^5(6x)^6)/(1.8 xx 10^(-4) "M" - 3x)^3#
#= (1.458 xx 10^18 cdot x^12)/(1.8 xx 10^(-4) "M" - 3x)^3#
Since
#2.45 xx 10^(-48) = (1.458 xx 10^18 cdot x^12)/(1.8 xx 10^(-4) "M")^3#
Therefore,
#x = (((2.45 xx 10^(-48))(1.8 xx 10^(-4) "M")^3)/(1.458 xx 10^18))^(1//12) = 3.83 xx 10^(-7) "M"#
That means (ignoring the autoionization of water):
#["IO"_3^(-)] = 3.83 xx 10^(-7) "M"#
#["I"^(-)] = 1.91 xx 10^(-6) "M"#
#["H"^(+)] = 2.30 xx 10^(-6) "M"#
#["I"_2] = 1.79 xx 10^(-4) "M"#
The percent ionization of
#(3cdot3.83 xx 10^(-7) "M")/(1.80 xx 10^(-4) "M") xx 100% = 0.639%#
Starting with
If the percent dissociation was
In actuality, the total concentration of all species in solution for this equilibrium is
#["IO"_3^(-)] + ["I"^(-)] + ["H"^(+)] + ["I"_2] = 1.84 xx 10^(-4) "M"# ,
so the van't Hoff factor is about
#i = (1.84 xx 10^(-4) "M IO"_3^(-) + "I"^(-) + "H"^(+) + "I"_2)/(1.80 xx 10^(-4) "M I"_2) ~~ 1.02#