What will be the value of #t_(0.875)/(t_(0.500))# for #n#th order reaction?
1 Answer
The time it takes for
#aA -> bB#
is:
#t_(gamma) = {(ln(1//gamma)/(ak), n=1),((1 - gamma^(n-1))/((n-1)gamma^(n-1) ak [A]_0^(n-1)), n = 0), (, n >= 2) :}#
If you wish take
This decomposition time ratio is then given as:
#t_(0.875)/t_(0.500) = overbrace(0.250)^(n=0), overbrace(0.193)^(n=1), overbrace(0.143)^(n=2), overbrace(0.102)^(n=3), . . . #
(However, it is not worth pursuing
#n >= 4# . Why?)
And this is independent of rate constant and initial concentration.
Well, if we took an arbitrary order
#aA -> bB# ,
then
#-1/a(d[A])/(dt) = {(k, n = 0), (k[A]^n, n >= 1):}#
Separation of variables gives:
#-akdt = {(d[A], n = 0), ([A]^(-n) d[A], n >= 1):}#
Integrating both sides, we obtain:
#-akint_(0)^(t) dt = {(int_([A]_0)^([A]) d[A], n = 0), (int_([A]_0)^([A]) [A]^(-n) d[A], n >= 1):}#
#-akt = {([A] - [A]_0, n = 0), (ln\frac([A])([A]_0), n = 1),(-([A]^(1-n) - [A]_0^(1-n))/(n-1), n >= 2):}#
As a result, we get any 1-reactant integrated rate law...
#[A] = -akt + [A]_0# ,#" "n = 0#
#ln[A] = -akt + ln[A]_0# ,#" "n = 1#
#1/([A]) = akt + 1/([A]_0)# ,#" "n = 2#
#1/(2[A]^2) = akt + 1/(2[A]_0^2)# ,#" "n = 3#
#" "vdots" "" "" "" "vdots#
#1/((n-1)[A]^(n-1)) = akt + 1/((n-1)[A]_0^(n-1))# ,#" "n = 0, 2, 3, 4, . . . #
- For a zero-order decomposition to leave
#gamma# fraction of#A# leftover,
#gamma[A]_0 = -akt_(gamma) + [A]_0#
#akt_(gamma) = (1 - gamma)[A]_0#
#color(green)(t_(gamma) = ((1 - gamma)[A]_0)/(ak))# So to get
#t_(0.875)/(t_(0.500))# ,
#color(blue)(t_(0.875)^((0))/(t_(0.500)^((0)))) = ((1 - 0.875)cancel([A]_0))/cancel(ak) cancel(ak)/((1 - 0.500)cancel([A]_0)) = color(blue)(0.250)#
- For a first-order decomposition to leave
#gamma# fraction of#A# leftover,
#ln(gamma[A]_0) = -akt_(gamma) + ln([A]_0)#
#akt_(gamma) = ln(cancel([A]_0)/(gammacancel([A]_0))) = ln (1//gamma)#
#color(green)(t_(gamma) = ln(1//gamma)/(ak))# So to get
#t_(0.875)/(t_(0.500))# ,
#color(blue)(t_(0.875)^((1))/(t_(0.500)^((1)))) = ln(1//0.875)/cancel(ak) cancel(ak)/ln(1//0.500) = color(blue)(0.193)#
- For a second-order decomposition to leave
#gamma# fraction of#A# leftover,
#1/(gamma[A]_0) = akt_(gamma) + 1/([A]_0)#
#akt_(gamma) = (1 - gamma)/(gamma[A]_0)#
#color(green)(t_(gamma) = (1 - gamma)/(gamma ak[A]_0))# So to get
#t_(0.875)/(t_(0.500))# ,
#color(blue)(t_(0.875)^((2))/(t_(0.500)^((2)))) = (1 - 0.875)/(0.875cancel(ak[A]_0)) (0.500cancel(ak[A]_0))/(1 - 0.500) = color(blue)(0.143)#
- For a third-order decomposition to leave
#gamma# fraction of#A# leftover,
#1/(2(gamma[A]_0)^2) = akt_(gamma) + 1/(2[A]_0^2)#
#akt_(gamma) = (1 - gamma^2)/(2gamma^2[A]_0^2)#
#color(green)(t_(gamma) = (1 - gamma^2)/(2gamma^2 ak[A]_0^2))# So to get
#t_(0.875)/(t_(0.500))# ,
#color(blue)(t_(0.875)^((3))/(t_(0.500)^((3)))) = (1 - 0.875^2)/(2 cdot 0.875^2cancel(ak[A]_0^2)) (2 cdot 0.500^2cancel(ak[A]_0^2))/(1 - 0.500^2) = color(blue)(0.102)#
- For an nth-order decomposition (
#n = 0, 2, 3, 4, . . . # ) to leave#gamma# fraction of#A# leftover,
#(gamma[A]_0)^(1-n) = a(n-1)kt_(gamma) + [A]_0^(1-n)#
#1/(gamma^(n-1)[A]_0^(n-1)) = a(n-1)kt_(gamma) + 1/([A]_0^(n-1))#
#a(n-1)kt_(gamma) = (1 - gamma^(n-1))/(gamma^(n-1)[A]_0^(n-1))#
#color(green)(t_(gamma) = (1 - gamma^(n-1))/((n-1)gamma^(n-1) ak [A]_0^(n-1)))# So to get
#t_(0.875)/(t_(0.500))# ,#" "n = 0, 2, 3, 4, . . . # ,
#color(blue)(t_(0.875)^((n))/(t_(0.500)^((n)))) = (1 - 0.875^(n-1))/(cancel((n-1))0.875^(n-1) cancel(ak [A]_0^(n-1))) (cancel((n-1))0.500^(n-1) cancel(ak [A]_0^(n-1)))/(1 - 0.500^(n-1))#
#= (1 - 0.875^(n-1))/(0.875^(n-1)) cdot (0.500^(n-1))/(1 - 0.500^(n-1))#
#= color(blue)(1/(1.75^(n-1))(1 - 0.875^(n-1))/(1 - 0.500^(n-1)))#