What is the pH of 10^-8M of KOH ?
1 Answer
I got
This is a problematic question... Since you have
#"H"_2"O"(l) rightleftharpoons "H"^(+)(aq) + "OH"^(-)(aq)#
#"I"" "-" "" "" "0" "" "" "" "10^(-8)#
#"C"" "-" "" "+x" "" "" "+x#
#"E"" "-" "" "" "x" "" "" "10^(-8)+x#
Now, we write
#K_w = ["H"^(+)]["OH"^(-)]#
#10^(-14) = x(10^(-8) + x)#
As we said,
#10^(-14) = 10^(-8)x + x^2#
#x^2 + 10^(-8)x - 10^(-14) = 0#
The exact solution is then
#x = -(10^(-8))/(2(1)) pm sqrt((10^(-8))^2 - 4(1)(-10^(-14)))/(2(1))#
#= -5 xx 10^(-9) pm sqrt(4.01 xx 10^(-16))/2#
#= -5 xx 10^(-9) pm 1.001 xx 10^(-7)#
The only physical answer is
#["H"^(+)] = 9.51 xx 10^(-8) "M"#
#["OH"^(-)] = 1.05 xx 10^(-7) "M"#
You can convince yourself that
#color(blue)("pH") = -log["H"^(+)] = color(blue)(7.02)#