The vapor pressure of pure cyclohexane (C6H12) and pure toluene (C7H8) at 20°C are 66.9 and 21.1 torr, respectively. The total pressure above a mixture of these two liquids is 50.0 torr. Calculate the mole fraction of cyclohexane in the liquid mixture?
And find the mole fraction of toluene in the vapor phase.
And find the mole fraction of toluene in the vapor phase.
1 Answer
#chi_("Cy"(l)) = 0.6310#
#chi_("Tol"(l)) = 0.3690#
#chi_("Cy"(g)) = 0.8443#
#chi_("Tol"(g)) = 0.1557#
The total pressure for ideal solutions is the simple sum:
#P_("tot") = P_("Cy") + P_"Tol"# where
#P_A# is the partial pressure of component#A# .
When forming an ideal solution (which cyclohexane and toluene do!), it follows Raoult's law, i.e.
#P_A = chi_(A(l))P_A^"*"# where
#"*"# indicates the pure component and#chi_(A(l))# is the mol fraction in the solution phase.
Thus,
#P_"tot" = chi_("Cy"(l))P_"Cy"^"*" + chi_("Tol"(l))P_"Tol"^"*"#
#= chi_("Cy"(l))P_"Cy"^"*" + (1-chi_("Cy"(l)))P_"Tol"^"*"#
#= chi_("Cy"(l))(P_"Cy"^"*" - P_"Tol"^"*") + P_"Tol"^"*"#
As a result, upon using the total vapor pressure, we can easily get the mol fraction of cyclohexane in the solution phase:
#color(blue)(chi_("Cy"(l))) = (P_"tot" - P_"Tol"^"*")/(P_"Cy"^"*" - P_"Tol"^"*")#
#= ("50.0 torr" - "21.1 torr")/("66.9 torr" - "21.1 torr")#
#= color(blue)(0.6310)#
Note that we have no way of knowing the mol fraction in the vapor phase simply by knowing the mol fraction in the solution phase --- they're not related.
Instead, we know that the partial pressure of one component above a solution is based on the mol fraction in the vapor phase:
#P_"Tol" = chi_("Tol"(g))P_"tot"#
Therefore, the mol fraction of toluene in the vapor phase is:
#color(blue)(chi_("Tol"(g))) = P_"Tol"/P_"tot"#
#= (chi_("Tol"(l))P_"Tol"^"*")/P_"tot"#
#= ((1 - chi_("Cy"(l)))P_"Tol"^"*")/P_"tot"#
#= ((1 - 0.6310)("21.1 torr"))/("50.0 torr")#
#= color(blue)(0.1557)#