The solubility product constant of CaSO4 is 2.4 x 10^-5 mol2dm-6, K sp of Ca(OH)2 is 5.5 x 10^-6 mol3dm-9 and K sp of CaCO3 is 8.7 x 10^-9 mol2dm-6. How can I calculate the concentration of Ca2+ in the solution?
1 Answer
I got
Well, if they're all in solution at the same time, why not construct a composite equilibrium?
#"CaSO"_4(s) rightleftharpoons "Ca"^(2+)(aq) + "SO"_4^(2-)(aq)#
#"Ca"("OH")_2(s) rightleftharpoons "Ca"^(2+)(aq) + 2"OH"^(-)(aq)#
#ul("CaCO"_3(s) rightleftharpoons "Ca"^(2+)(aq) + "CO"_3^(2-)(aq)#
#"CaSO"_4(s) + "Ca"("OH")_2(s) + "CaCO"_3(s) rightleftharpoons 3"Ca"^(2+)(aq) + "CO"_3^(2-)(aq) + "SO"_4^(2-)(aq) + 2"OH"^(-)(aq)#
#beta = K_(sp1)K_(sp2)K_(sp3)#
#= 2.4 xx 10^(-5) cdot 5.5 xx 10^(-6) cdot 8.7 xx 10^(-9) = 1.15 xx 10^(-18)#
#= ["Ca"^(2+)]^3["CO"_3^(2-)]["SO"_4^(2-)]["OH"^(-)]^2#
We define
#1.15 xx 10^(-18) = (3s)^3(s)(s)(2s)^2#
#= 108s^7#
Therefore,
#color(blue)(["Ca"^(2+)]) = 3s = 3(beta/108)^(1//7)#
#= 3 cdot ((1.15 xx 10^(-18))/108)^(1//7) "M"#
#=# #color(blue)("0.0042 M")#