The limiting line in balmer series will have frequency of ?
1 Answer
Well, it depends on the atomic number...
#nu = Z^2 cdot 8.22467 xx 10^14 "s"^(-1)#
The Balmer series for the hydrogen-like atom is for transitions that end at
The limiting line is basically when you consider shoving a new electron into the atom and forcing it to land in the destination energy level
So, we have
#E_n = -"13.6058 eV" cdot Z^2/n^2#
Thus, the change in energy for a relaxation is given by
#DeltaE_(oo->2) = -"13.6058 eV" cdot Z^2 (1/2^2 - cancel(1/oo^2)^(0))#
#= -Z^2cdot"3.4015 eV"#
The atom will then emit light... with photon energy
#|E| = DeltaE_(oo->2) = hnu#
#= Z^2cdot3.4015 cancel"eV" xx (1.60217662 xx 10^(-19) "J")/(cancel"1 eV")#
#= Z^2 cdot 5.4497 xx 10^(-19) "J"# .where
#h = 6.62607004 xx 10^(-34) "J"cdot"s"# is Planck's constant and#nu# is the frequency in#"s"^(-1)# (#"Hz"# ).
Hence, the frequency is:
#color(blue)(nu) = [Z^2 cdot 5.4497 xx 10^(-19) cancel"J"]/(6.62607004 xx 10^(-34) cancel"J"cdot"s")#
#= color(blue)(Z^2 cdot 8.22467 xx 10^14 "s"^(-1))#