#lim_(n->oo)(1+xe^(nx))/(1+e^(nx));x inRR#?
2 Answers
See below.
Explanation:
Well, we could split this into three parts:
#x > 0# #x = 0# #x < 0#
If
#L = lim_(n->oo) (1 + xe^(nx))/(1 + e^(nx))#
At large
#=> color(blue)(L) = lim_(n->oo) (xcancel(e^(nx)))/(cancel(e^(nx))) = color(blue)(x)#
If
#=> color(blue)(L) = lim_(n->oo) (1 + xe^(-nx))/(1 + e^(-nx))#
#= lim_(n->oo) (1 + cancel(x/(e^(nx))))/(1 + cancel(1/(e^(nx)))) = color(blue)(1)#
If
#L = lim_(n->oo) (1 + xe^(nx))/(1 + e^(nx))# is of the form#(0cdote^(oocdot0))/(e^(oocdot0))# .
It seems odd at first, since
So,
#=> color(blue)(L) = (1 + 0cdot1)/(1 + 1) = color(blue)(1/2)#