In the topic, CHANGE IN ENTROPY why we take q(rev.) = RTlnV2/V1 ?
1 Answer
Because the change in entropy is STATED to be isothermal...
#q_(rev,T) = nRTln(V_2/V_1)#
Isothermal changes in entropy, if
#DeltaS_T = int_(V_1)^(V_2) ((delS)/(delV))_TdV#
The Helmholtz free energy Maxwell relation relates the natural variables
#dA = -SdT - PdV#
Since
#-((delS)/(delV))_T = -((delP)/(delT))_V#
As a result,
#DeltaS_T = int_(V_1)^(V_2) ((delP)/(delT))_VdV#
For ideal gases,
#DeltaS_T = int_(V_1)^(V_2) (del)/(delT)[(nRT)/V]_VdV#
#= nRint_(V_1)^(V_2) 1/VdV#
#= nR ln (V_2/V_1)#
Thus, the isothermal change in molar entropy is given by:
#(DeltaS_T)/n -= color(blue)(DeltabarS_T = Rln(V_2/V_1))#
And from the relations derived for Carnot's engine,
#q_(rev)/T = int_((1))^((2)) (deltaq_(rev))/T = int_((1))^((2)) dS -= DeltaS#
So, at constant temperature,
#color(blue)(q_(rev,T) = nRTln(V_2/V_1))#
in units of JOULES. Hence, there must be