How to calculate the max pH at which reaction occurs using the Nernst equation?
How could I determine the max pH at which chloride can reduce hypochlorous acid. I've only been given these two half reactions and their standard potentials:
#Cl_2 + 2e^-# #-> 2 # #Cl^-# #E^o= +1,359V #
#2 HOCl + 2H^+# #+2 e^-# #-> Cl_2 + 2H_2O# #E^o = +1,63V#
How could I determine the max pH at which chloride can reduce hypochlorous acid. I've only been given these two half reactions and their standard potentials:
1 Answer
For this reaction,
#"pH"_(max) = log{(["HOCl"]["Cl"^(-)])/(["Cl"_2(g)]) "exp"((nFE_(cell)^@)/(RT))}#
#~~ 0.4343ln((["HOCl"]["Cl"^(-)])/(["Cl"_2(g)])) + (0.4343nFE_(cell)^@)/(RT)# where
#n = 2# , and concentrations must be known ahead of time.
I derive this below.
The full reaction when adding these depends on what will make it spontaneous at
#E_(cell)^@ = E_(cathode)^@ - E_(anode)^@#
#= "1.63 V" - "1.359 V" = "0.27 V"# where both values used are the given standard reduction potentials.
In this case,
#2stackrel(color(blue)(+1))"H"stackrel(color(blue)(-2))"O"stackrel(color(blue)(+1))"Cl"(aq) + 2stackrel(color(blue)(+1))("H"^(+))(aq) + cancel(2e^(-)) -> stackrel(color(blue)(0))"Cl"_2(g) + 2stackrel(color(blue)(+1))"H"_2stackrel(color(blue)(-2))"O"(l)#
#ul(2stackrel(color(blue)(-1))("Cl"^(-))(aq) -> cancel(2e^(-)) + stackrel(color(blue)(0))("Cl"_2)(g)" "" "" "" "" ")#
#2stackrel(color(blue)(+1))"H"stackrel(color(blue)(-2))"O"stackrel(color(blue)(+1))"Cl"(aq) + 2stackrel(color(blue)(+1))("H"^(+))(aq) + 2stackrel(color(blue)(-1))("Cl"^(-))(aq) -> 2stackrel(color(blue)(0))"Cl"_2(g) + 2stackrel(color(blue)(+1))"H"_2stackrel(color(blue)(-2))"O"(l)#
And this we reduce down to:
#stackrel(color(blue)(+1))"H"stackrel(color(blue)(-2))"O"stackrel(color(blue)(+1))"Cl"(aq) + stackrel(color(blue)(+1))("H"^(+))(aq) + stackrel(color(blue)(-1))("Cl"^(-))(aq) -> stackrel(color(blue)(0))"Cl"_2(g) + stackrel(color(blue)(+1))"H"_2stackrel(color(blue)(-2))"O"(l)#
This reaction has the following reaction quotient:
#Q = (["Cl"_2(g)])/(["HOCl"]["H"^(+)]["Cl"^(-)])#
The Nernst equation relates
#E_(cell) = E_(cell)^@ - (RT)/(nF)lnQ# where
#RT# is known from, e.g. the ideal gas law (except#R = "8.314472 V"cdot"C/mol"cdot"K"# here),#n# is the number of electrons (#"mol e"^(-)"/mol atoms"# ),#F = "96485 C/mol e"^(-)# , and#E_(cell)# is the cell potential.
The max pH for which the reaction "occurs" may mean the value for which the reaction ceases to be spontaneous, or reaches equilibrium, i.e. when
We should notice that
- since
#"pH" = -log["H"^(+)]# ,#"pH"# increases as#["H"^(+)]# decreases (less acidic). - as
#["H"^(+)]# decreases in the denominator of#Q# , we shall see that#Q# increases, which makes#-(RT)/(nF)lnQ# more negative (less positive).
Therefore, increasing
So, set
#E_(cell)^@ = (RT)/(nF)lnQ#
#ln Q = (nFE_(cell)^@)/(RT)#
#Q = "exp"((nFE_(cell)^@)/(RT)) -= e^(nFE_(cell)^@//RT)#
#= (["Cl"_2(g)])/(["HOCl"]["H"^(+)]["Cl"^(-)])#
Knowing that
#"exp"((nFE_(cell)^@)/(RT)) = (["Cl"_2(g)])/(["HOCl"]["Cl"^(-)]) cdot 10^("pH")#
Therefore, after rearranging, we get a general expression:
#"pH"_(max) = log{(["HOCl"]["Cl"^(-)])/(["Cl"_2(g)]) "exp"((nFE_(cell)^@)/(RT))}#
Or, if we want to simplify this further, note that
#color(blue)("pH"_(max)) ~~ 1/(2.303) ln{(["HOCl"]["Cl"^(-)])/(["Cl"_2(g)]) "exp"((nFE_(cell)^@)/(RT))}#
#~~ color(blue)(0.4343ln((["HOCl"]["Cl"^(-)])/(["Cl"_2(g)])) + (0.4343nFE_(cell)^@)/(RT))#