How do you calculate the mass defect for C-14? How do you calculate the binding energy?
1 Answer
Well, you take the theoretical mass of combining all the particles, and subtract from it the actual isotopic mass. That mass accounts for the binding energy.
You'll need:
#m_p = "1.00727647 amu/proton"# #m_n = "1.00866492 amu/neutron"# #m_e = 5.48530 xx 10^(-4) "amu/electron"# #m_(""^(14) "C") = "14.003241989 amu/atom"# - There are
#("1.60217662 J")/("1 eV")# .- The speed of light is
#2.99792458 xx 10^8 "m/s"# .- Avogadro's number is
#6.0221413 xx 10^23 "mol"^(-1)# .
We know that
#"6 protons" cdot "1.00727647 amu/proton" + "6 electrons" cdot 5.48530 xx 10^(-4) "amu/electron" + "8 neutrons" cdot "1.00866492 amu/neutron"#
#=# #"14.11626936 amu/atom"#
The mass defect is then
#color(blue)(m_"defect") = m_"theoretical" - m_(""^(14) "C")#
#= "14.11626936 amu/atom" - "14.003241989 amu/atom"#
#=# #color(blue)("0.11302737 amu")#
The mass that becomes energy is:
#m = (0.11302737 cancel"g")/cancel"mol" xx "1 kg"/(1000 cancel"g") xx (cancel"1 mol")/(6.0221413 xx 10^(23))#
#= 1.87686348 xx 10^(-28) "kg"#
So, the binding energy involved in
#E_"binding" = mc^2#
#= (1.87686348 xx 10^(-28) "kg")(2.99792458xx10^(8) "m/s")^2#
#= 1.68680000^(-11) "J/atom"#
We may want it in
#color(blue)(E_"binding") = (1.68680000 xx 10^(-11) cancel"J")/cancel"atom" xx "1 kJ"/(1000 cancel"J") xx (6.0221413 xx 10^23 cancel"atoms")/("1 mol")#
#= color(blue)(1.015815 xx 10^(10) "kJ/mol")#
#color(blue)(E_"binding") = (1.68680000 xx 10^(-11) cancel"J")/cancel"atom" xx cancel"1 eV"/(1.60217662 xx 10^(-19) cancel"J") xx ("1 MeV")/(10^6 cancel"eV") xx cancel"1 C-14 atom"/("14 nucleons")#
#=# #color(blue)("7.520127 MeV/nucleon")#
The actual value is