How I do the THEORETICAL calculation of solubility?
1 Answer
Well, you would need the solubility product constant
For some generic ionic compound
#M_(nu_(+))X_(nu_(-))(s) stackrel(H_2O(l))(rightleftharpoons) nu_(+)M^(z_+)(aq) + nu_(-)X^(z_-)(aq)# where
#nu_(pm)# is the stoichiometric coefficient for the cation#(+)# or anion#(-)# , while#z_pm# is the charge of the cation#(+)# or anion#(-)# .
Its mass action expression would then be:
#K_(sp) = [M^(z_+)]^(nu_(+))[X^(z_-)]^(nu_(-))#
If we define solubility as
#K_(sp) = (nu_(+)cdot s)^(nu_(+))(nu_(-)cdot s)^(nu^(-))#
#= nu_(+)^(nu_(+))nu_(-)^(nu_(-))cdot s^(nu_(+) + nu_(-))#
In general, it would mean the solubility is:
#color(blue)(barul|stackrel(" ")(" "s = (K_(sp)/(nu_(+)^(nu_(+))nu_(-)^(nu_(-))))^(1//(nu_(+)+nu_(-)))" ")|)#
If we have, say,
#"Ca"_3("PO"_4)_2(s) rightleftharpoons3 "Ca"^(2+)(aq) + 2"PO"_4^(3-)(aq)#
In this case,
#nu_(+) = 3#
#nu_(-) = 2#
#z_(+) = 2#
#z_(-) = -3#
Therefore,
#K_(sp) = ["Ca"^(2+)]^3["PO"_4^(3-)]^2#
#= (3 cdot s)^3 cdot (2 cdot s)^2#
#= 3^3 cdot 2^2 cdot s^(3+2)#
#= 108s^5#
And then its solubility would be given by:
#color(blue)(barul|stackrel(" ")(" "s = (K_(sp)/108)^(1//5)" ")|)#
For
#s = ((2.07 xx 10^(-33))/(108))^(1//5)#
#= 1.14 xx 10^(-7) "M"#
This means that in
#1.14 xx 10^(-8) cancel"mols" xx ("310.172 g Ca"_3("PO"_4)_2)/(cancel"1 mol")#
#= 3.53 xx 10^(-6) "g" ~~ "0.00353 mg"#
However, this