How do you use a Taylor polynomial to estimate #tan(x)# around #x=0# for #n=0, 1, 2#?
1 Answer
Assuming you already know what the Maclaurin polynomial for
#tanx = sum_(n=0)^(N) (f^((n))(0))/(n!) x^n#
#= x + 1/3x^3 + 2/15x^5 + 17/315 x^7 + . . . #
To estimate
For
To estimate it up to the
#tanx ~~ cancel(f^((0))(x))^"small" + f'(x)#
#~~ x#
To estimate it up to the
#tanx ~~ cancel(f^((0))(x))^"small" + f'(x) + f''(x)#
#~~ x + 1/3 x^3#
For example,
#tan("0.05 rad") ~~ color(blue)(0.0500417)#
whereas truncated at
#0.05 = color(blue)(0.0500000) < tanx#
and truncated at
#0.05 + 1/3(0.05)^3 = color(blue)(0.050041bar(66)) ~~ tanx#