How do you integrate #int 1/(1+sqrtx) dx#?
1 Answer
Oct 14, 2016
Try something and see what sticks. I got
#2sqrtx - 2ln|1 + sqrtx| + C#
Let:
#u = sqrtx#
#du = 1/(2sqrtx)dx#
#dx = 2sqrtxdu = 2udu#
Therefore we now have:
#= int 1/(1 + u)*2udu#
#= 2int u/(1+u)du#
#= 2int (u + 1 - 1)/(1 + u)du#
#= 2int cancel((1 + u)/(1 + u))du - 2int 1/(1+u)du#
This is easy now. We'll get:
#= 2u - 2ln|1+u|#
Finally, just plug in
#= color(blue)(2sqrtx - 2ln|1 + sqrtx| + C)#