How do you find the volume of a solid of revolution washer method? Calculus Applications of Definite Integrals Determining the Volume of a Solid of Revolution 1 Answer Wataru Aug 30, 2014 Suppose that #f(x)geq g(x)# for all #x# in #[a,b]#. If the region between the graphs of #f# and #g# from #x=a# to #x=b# is revolved about the #x#-axis, then the volume of the resulting solid can be found by #V=pi int_a^b{[f(x)]^2-[g(x)]^2}dx# Answer link Related questions How do you use cylindrical shells to find the volume of a solid of revolution? How do you find the volume of a solid of revolution using the disk method? How do you find the volume of a cone using an integral? How do you find the volume of the solid obtained by rotating the region bounded by #y=x# and... How do you find the volume of the solid obtained by rotating the region bounded by #y=x# and... How do I perform the following: #int_0^1int_0^sqrt(1-x^2)int_sqrt(x^2+y^2)^sqrt(2-x^2-y^2) xy dz dy dx#? How do you find the volume of a region that is bounded by #x=y^2-6y+10# and #x=5# and rotated... How do you find the volume of a solid that is generated by rotating the region enclosed by the... How do you find the volume of the solid generated by revolving the region bounded by the graph... What is the volume of the region enclosed by #y=2-0.5x#, #y=0#, #x=1#, #x=2#, that is rotated... See all questions in Determining the Volume of a Solid of Revolution Impact of this question 1075 views around the world You can reuse this answer Creative Commons License