How do you find the limit of #sqrt(x)^sqrt(x)# as x approaches 0 from the right?
#lim_(x->0^+)# #sqrt(x)^sqrt(x)#
1 Answer
I get
graph{sqrtx^(sqrtx) [-2.923, 4.872, -1.046, 2.85]}
Anytime I see exponents I take the
#ln L = ln lim_(x->0^+) sqrtx^(sqrtx)#
Since
#=> ln L = lim_(x->0^+) ln(sqrtx^(sqrtx))#
#= lim_(x->0^+) sqrtxlnsqrtx#
Right now we have the form
#= lim_(x->0^+) lnsqrtx/(1/sqrtx)#
Now L'Hopital's rule can apply, since this is of the form
#= lim_(x->0^+) (1/sqrtx cdot 1/(2sqrtx))/(-1/2x^(-3//2))#
#= lim_(x->0^+) (1/(2x))/(-1/(2x^(3//2))#
#= lim_(x->0^+) -sqrt(2x)#
#= 0#
And remember, this was the
#e^(lnL) = color(blue)(L) = e^0 = color(blue)(1)#