How do you differentiate #\tan ^ { - 1} ( \cos \sqrt { x } )#?
1 Answer
The derivative of
I got
#-(sinsqrtx)/(2sqrtx(1 + (cos sqrtx)^2))#
Lots of chain rule going on here. If we had
#(df)/(dx) = (df)/(du) (du)/(dv) (dv)/(dx)#
#= d/(du)[f(u)] cdot d/(dv)[u(v)] cdot d/(dx)[v(x)]#
#= d/(du)[arctanu] cdot d/(dv)[cosv] cdot d/(dx)[sqrtx]#
#= 1/(1 + u^2) cdot (-sinv) cdot 1/(2sqrtx)#
Therefore, since
#d/(dx)[arctan(cossqrtx)]#
#= 1/(1 + (cossqrtx)^2) cdot (d(cossqrtx))/(dx) cdot (d(sqrtx))/(dx)#
#= 1/(1 + (cossqrtx)^2) cdot -sinsqrtx cdot 1/(2sqrtx)#
#= color(blue)(-(sinsqrtx)/(2sqrtx(1 + (cos sqrtx)^2)))#
Define
#1 = sec^2y (dy)/(dx)#
As a result:
#(dy)/(dx) = 1/(sec^2y)#
Since
#(dy)/(dx) = 1/(1 + tan^2y)#
Since
#color(green)((dy)/(dx) = d/(dx)[arctanx] = 1/(1 + x^2))#