For which of the following is deltaH equal to deltaE(internal energy)?
#2"CO"(g)+"O"_2(g) -> 2"CO"_2(g)#
#"H"_2(g)+"Br"_2(g) ->2"HBr"(g)#
#"C"(s)+2"H"_2"O"(g) ->2"H"_2+"CO"_2#
#"PCl"_5(g) ->"PCl"_3(g)+"Cl"_2(g)#
#2"CO"(g)+"O"_2(g) -> 2"CO"_2(g)# #"H"_2(g)+"Br"_2(g) ->2"HBr"(g)# #"C"(s)+2"H"_2"O"(g) ->2"H"_2+"CO"_2# #"PCl"_5(g) ->"PCl"_3(g)+"Cl"_2(g)#
1 Answer
Well, only
#2"CO"(g)+"O"_2(g) -> 2"CO"_2(g)# #"H"_2(g)+"Br"_2(g) ->2"HBr"(g)# #"C"(s)+2"H"_2"O"(g) ->2"H"_2+"CO"_2# #"PCl"_5(g) ->"PCl"_3(g)+"Cl"_2(g)#
By definition,
#H = E + PV# where
#H# is enthalpy,#E# is internal energy, and#P# and#V# are known from the ideal gas law.
Taking the change, we get:
#color(green)(DeltaH) = DeltaE + Delta(PV)#
#= DeltaE + P_2V_2 - P_1V_1#
#= DeltaE + (P_2 - P_1 + P_1)(V_2 - V_1 + V_1) - P_1V_1#
#= DeltaE + (DeltaP + P_1)(DeltaV + V_1) - P_1V_1#
#= DeltaE + P_1DeltaV + V_1DeltaP + DeltaPDeltaV + cancel(P_1V_1 - P_1V_1)#
#= color(green)(DeltaE + P_1DeltaV + V_1DeltaP + DeltaPDeltaV)#
Now, we have assumed that pressure is constant, so:
#DeltaH = DeltaE + P_1DeltaV#
Under this assumption, if
Hence, we can say