Find the de broglie wavelength of hydrogen atom at a temperature 303 K?
1 Answer
I got
Well, we assume that for hydrogen atom, the temperature is high enough that the equipartition theorem applies and the average kinetic energy is given by:
#<< kappa >> = N/2 k_BT# where
#N# is the number of degrees of freedom,#k_B = 1.38065 xx 10^(-23) "J/particle"cdot"K"# is the Boltzmann constant, and#T# is the temperature in#"K"# .
#<< kappa >> = 3/2 cdot 1.38065 xx 10^(-23) "J/atom"cdotcancel"K" cdot 303 cancel"K"#
#= 6.275 xx 10^(-21) "J/atom"#
The kinetic energy of a single atom is also equal to
#<< kappa >>_"single atom" = K = 1/2mv^2 = p^2/(2m)# where
#p# is the forward linear momentum, and#m# is the mass of the atom.
Therefore, its momentum is:
#p = sqrt(2m<< kappa >>)#
#= sqrt(2cdot"0.0010079 kg"//cancel"mol" xx cancel"1 mol"/(6.0221413 xx 10^(23) cancel"particles") cdot 6.275 xx 10^(-21) "kg"cdot"m"^2"/s"^2cdotcancel"atom")#
#= 4.583 xx 10^(-24) "kg"cdot"m/s"#
And now, by the de Broglie relation:
#lambda = h/p# ,where
#h = 6.626 xx 10^(-34) "J"cdot"s"# is Planck's constant and#lambda# is the wavelength in#"m"# of a mass-ive particle.
Therefore:
#color(blue)(lambda) = (6.626 xx 10^(-34) cancel"kg"cdot"m"^cancel(2)"/"cancel"s")/(4.583 xx 10^(-24) cancel("kg"cdot"m/s"))#
#= 1.446 xx 10^(-10) "m"#
#=# #color(blue)("0.145 nm")#