Consider the titration of 50.0 mL of 0.20 M NH3 (Kb=1.8×10−5) with 0.20 M HNO3. Calculate the pH after addition of 50.0 mL of the titrant at 25 ∘C?
1 Answer
I got
If you notice, the volume and concentration of both
This leaves the same number of mols of
#["NH"_4^+]_i = "0.20 mol"/"L" xx ("50.0 mL")/("50.0 mL" + "50.0 mL")#
#=# #"0.10 M"#
This
#K_a = K_w/K_b = 10^(-14)/(1.8 xx 10^(-5)) = 5.56 xx 10^(-10)#
And this dissociation is:
#"NH"_4^(+)(aq) + "H"_2"O"(l) rightleftharpoons "NH"_3(aq) + "H"_3"O"^(+)(aq)#
#"I"" "0.20" "" "" "-" "" "" "0.00" "" "" "0.00#
#"C"" "-x" "" "" "-" "" "" "+x" "" "" "+x#
#"E"" "0.20-x" "-" "" "" "" "x" "" "" "" "x#
Therefore:
#5.56 xx 10^(-10) = x^2/(0.20 - x)#
#5.56 xx 10^(-10) = x^2/0.20#
#=> x = sqrt(0.20 cdot 5.56 xx 10^(-10))#
#= 1.05 xx 10^(-5) "M"#
As a result,
#color(blue)("pH") = -log(1.05 xx 10^(-5)) = color(blue)(4.98)#