Calculate the wave number of photon whose energy is 6.626×10^-20 J?

1 Answer
Jun 10, 2018

Well, it depends on what you mean...


In physics and physical chemistry, the wave number is

#k = (2pi)/lambda#,

the number of waves per meter. The energy of a photon is

#E = hnu = (hc)/lambda#

where:

  • #h = 6.626 xx 10^(-34) "J"cdot"s"# is Planck's constant.
  • #c = 2.998 xx 10^(8) "m/s"# is the speed of light.
  • #lambda# is the wavelength in #"m"#.

Hence, the wavelength is:

#lambda = (hc)/E = (6.626 xx 10^(-34) cancel"J"cdotcancel"s" cdot 2.998 xx 10^8 "m"cancel"/s")/(6.626 xx 10^(-20) cancel"J")#

#= 2.998 xx 10^(-6) "m"#

and thus, the "wave number" is:

#color(blue)(k) = (2pi)/(2.998 xx 10^(-6) "m")#

#= color(blue)(2.096 xx 10^6 "waves/meter")#

In spectroscopic chemistry, the wavenumber is the frequency #tildenu# in reciprocal centimeters, #"cm"^(-1)#. Hence,

#color(blue)(tildenu) = E/(hc) = (6.626 xx 10^(-20) cancel"J")/(6.626 xx 10^(-34) cancel"J"cdotcancel"s") xx cancel"s"/(2.998 xx 10^10 "cm")#

#= color(blue)(3.336 xx 10^3 "cm"^(-1))#