Calculate the #["H"_3"O"^(+)]# and #["OH"^(-)]# for 0.0051 M H2SO4. Answer in units of M.?
1 Answer
#["H"_3"O"^(+)] = "0.0081 M"# ; why is it NOT#"0.0102 M"# ?
#["OH"^(-)] = K_w/(["H"_3"O"^(+)]) = ???#
Begin by recognizing that
#"H"_2"SO"_4(aq) + "H"_2"O"(l) -> "HSO"_4^(-)(aq) + "H"_3"O"^(+)(aq)#
Thus,
What about the second dissociation? No acid dissociation constant
#"HSO"_4^(-)(aq) + "H"_2"O"(l) rightleftharpoons "SO"_4^(2-)(aq) + "H"_3"O"^(+)(aq)#
#"I"" "["HSO"_4^(-)]_i" "" "-" "" "" "0" "" "" "" "["H"_3"O"^(+)]_i#
#"C"" "-x" "" "" "" "-" "" "+x" "" "" "" "+x#
#"E"" "["HSO"_4^(-)]_i - xcolor(white)(.)-" "" "" "x" "" "" "["H"_3"O"^(+)]_i+x#
and the mass action expression is known to be:
#1.2 xx 10^(-2) = (["SO"_4^(2-)]["H"_3"O"^(+)])/(["HSO"_4^(-)]) -= (x(["H"_3"O"^(+)]_i + x))/(["HSO"_4^(-)]_i - x)#
We must identify that
#["H"_2"SO"_4]_i = ["HSO"_4^(-)]_(eq) = ["H"_3"O"^(+)]_(eq)# from the first dissociation is#["HSO"_4^(-)]_i# and#["H"_3"O"^(+)]_i# for the second dissociation.#["HSO"_4^(-)]_(eq) = ["H"_3"O"^(+)]_(eq)# for the first dissociation.#["SO"_4^(2-)]_(eq) ne ["H"_3"O"^(+)]_(eq)# for the second cumulative dissociation.
This
#1.2 xx 10^(-2) = (x(0.0051 + x))/(0.0051 - x)#
#=> x^2 + 0.0171x + 6.12 xx 10^(-5) = 0#
Solving this gives
#color(blue)(["H"_3"O"^(+)]) = "0.0051 M" + "0.00304 M" = color(blue)("0.0081 M")#
And from here, the
#color(blue)(["OH"^(-)]) = K_w/(["H"_3"O"^(+)]) = 10^(-14)/("0.0081 M")#
#= color(blue)(1.24 xx 10^(-12) "M")#