A certain gas begins at #"10 atm"#, #"300 K"#, and #"1 L"#. If it expands in a closed container to #"5 atm"# and #"4 L"#, and the heat capacity is #"50 J/"^@ "C"#, what is the change in enthalpy?
1 Answer
Assuming the gas is ideal, you're going from
#P -> 1/2P#
#V -> 4V# ,
that means
#[T = (PV)/(nR)] -> [(P/2 cdot 4V)/(nR) = (2PV)/(nR) = 2T]#
So the new temperature is
#C_P = ((delH)/(delT))_P#
so
#DeltaH = int_(T_1)^(T_2) C_P dT#
Assuming that
#color(blue)(DeltaH) ~~ C_P int_(T_1)^(T_2) dT#
#= "50 J/"^@ "C" cdot (T_2 - T_1)#
#= "50 J/"^@ "C" cdot ("600 K" - "300 K")#
#= "50 J/"cancel"K" cdot 300 cancel"K"#
#=# #"15000 J"#
#=# #color(blue)("15 kJ")#
If you were given
#n = (PV)/(RT) = "constant..."#
#= ("10 atm" cdot "1 L")/("0.082057 L"cdot"atm/mol"cdot"K" cdot "300 K") = "0.4062 mols"#
And with that, if you were given
#color(blue)(DeltaH) ~~ (C_V + nR) int_(T_1)^(T_2) dT#
#= ("50 J/"^@ "C" + nR) cdot (T_2 - T_1)#
#= ("50 J/"cancel"K" + 0.4062 cancel"mols" cdot "8.314472 J/"cancel"mol"cdotcancel"K") cdot (600 cancel"K" - 300 cancel"K")#
#=# #"16013 J"#
#=# #color(blue)("16 kJ")#