Calculate the ratio of total aspirin concentration (#"HAsp" + "Asp"^(-)#) on the L/R side of a membrane between blood plasma and the stomach, if #["HAsp"]# is the same on each side of the membrane? The stomach #"pH"# is #1.00# and blood #"pH"# is #7.4#.
1 Answer
All we have to do here is
- Calculate the
#"HAsp/Asp"^(-)# ratio on each side of the membrane. - Note that
#["HAsp"]# is the same across the membrane by assuming the blood plasma and stomach are in equilibrium. - That allows for cancellation of
#["Asp"^(-)]_(L//R)# upon knowing the only other unknown.
And hopefully we recognize we should invoke the Henderson-Hasselbalch equation:
#"pH" = "pK"_a + log\frac(["Asp"^(-)])(["HAsp"])#
Here we distinguish between the left and right sides of the membrane, i.e.
#"pH"_L = "pK"_a + log\frac(["Asp"^(-)]_L)(["HAsp"]_L)#
#"pH"_R = "pK"_a + log\frac(["Asp"^(-)]_R)(["HAsp"]_R)#
Since the protonated aspirin is in equilibrium across the two sides of the membrane,
#7.4 = 3.5 + log\frac(["Asp"^(-)]_L)(["HAsp"])#
#1.0 = 3.5 + log\frac(["Asp"^(-)]_R)(["HAsp"])#
And so we solve for the two ratios:
#(["Asp"^(-)]_L)/(["HAsp"]) = 10^(7.4 - 3.5) = 7.943 xx 10^3#
#(["Asp"^(-)]_R)/(["HAsp"]) = 10^(1.0 - 3.5) = 3.162 xx 10^(-3)#
Now, since the concentrations of protonated aspirin are equal on either side of the membrane, we obtain our key relationship:
#["HAsp"] = (["Asp"^(-)]_L)/(7.943 xx 10^3) = (["Asp"^(-)]_R)/(3.162 xx 10^(-3))#
Now we have enough info to get the ratio of total drug on either side, i.e. what is
#(["HAsp"] + ["Asp"^(-)]_L)/(["HAsp"] + ["Asp"^(-)]_R) ?#
That can be done as follows.
#(["HAsp"] + ["Asp"^(-)]_L)/(["HAsp"] + ["Asp"^(-)]_R)#
#= ((["Asp"^(-)]_L)/(7.943 xx 10^3) + ["Asp"^(-)]_L)/((["Asp"^(-)]_R)/(3.162 xx 10^(-3)) + ["Asp"^(-)]_R)#
#= ((["Asp"^(-)]_L)/(7.943 xx 10^3) + ["Asp"^(-)]_L)/((["Asp"^(-)]_L)/(7.943 xx 10^3) + ["Asp"^(-)]_R)#
#= ((["Asp"^(-)]_L)/(7.943 xx 10^3) + ["Asp"^(-)]_L)/((["Asp"^(-)]_L)/(7.943 xx 10^3) + ["Asp"^(-)]_L cdot (3.162 xx 10^(-3))/(7.943 xx 10^3))# where we have used the final relation shown above to substitute for
#(["Asp"^(-)]_R)/(3.162 xx 10^(-3))# and#["Asp"^(-)]_R# .
We obtain:
#color(blue)((["HAsp"] + ["Asp"^(-)]_L)/(["HAsp"] + ["Asp"^(-)]_R))#
#= ((cancel(["Asp"^(-)]_L))/(7.943 xx 10^3) + cancel(["Asp"^(-)]_L))/((cancel(["Asp"^(-)]_L))/(7.943 xx 10^3) + cancel(["Asp"^(-)]_L) cdot (3.162 xx 10^(-3))/(7.943 xx 10^3))#
#= (1/(7.943 xx 10^3) + 1)/(1/(7.943 xx 10^3) + (3.162 xx 10^(-3))/(7.943 xx 10^3))#
#= (1 + 7.943 xx 10^3)/(1 + 3.162 xx 10^(-3))#
#= 7919.24#
#= color(blue)(7.92 xx 10^3)#