What is the initial concentration of the conjugate base of a weak monoprotic acid whose #"pK"_a# is #4.30# if the #"pH"# is #8.30#?
1 Answer
Well, you gotta work backwards, and recognize what a conjugate base is (i.e. that it uses
I got
The
#["H"^(+)]_(eq) = 10^(-"pH") = 10^(-8.30)#
#= 5.011 xx 10^(-9) "M H"^(+)#
Now, we know that the base associates in aqueous solution. In units of
#"A"^(-)(aq) + "H"_2"O"(l) rightleftharpoons "HA"(aq) + "OH""^(-)(aq)#
#"I"" "["A"^(-)]_i" "" "color(white)(.)-" "" "" "0" "" "" "" "0#
#"C"" "-x" "" "" "-" "" "+x" "" "" "+x#
#"E"" "["A"^(-)]_i-xcolor(white)(.)-" "" "" "x" "" "" "" "x#
From the
#"pK"_a + "pK"_b = "pK"_w = 14#
As a result,
#K_b = 10^(-"pK"_b) = 10^(-9.70) = 1.995 xx 10^(-10)#
#= (["HA"]["OH"^(-)])/(["A"^(-)])#
#= x^2/(["A"^(-)]_i - x)#
And from
At
#K_w = ["H"^(+)]["OH"^(-)] = 10^(-14) = (5.011 xx 10^(-9) "M")["OH"^(-)]#
Thus,
#["OH"^(-)]_(eq) = x = 10^(-14)/(5.011 xx 10^(-9) "M")#
#= 1.995 xx 10^(-6) "M OH"^(-)#
And so:
#K_b = 1.995 xx 10^(-10)#
#= (1.995 xx 10^(-6) "M")^2/(["A"^(-)]_i - 1.995 xx 10^(-6) "M")#
#= (3.980 xx 10^(-12) "M"^2)/(["A"^(-)]_i - 1.995 xx 10^(-6) "M")#
Solve for
#1.995 xx 10^(-10)(["A"^(-)]_i - 1.995 xx 10^(-6) "M") = 3.980 xx 10^(-12) "M"^2#
#1.995 xx 10^(-10)["A"^(-)]_i " M"^2 - 3.980 xx 10^(-16) " M"^2 = 3.980 xx 10^(-12) "M"^2#
#ul(["A"^(-)]_i) = (3.980 xx 10^(-12) "M"^2 + 3.980 xx 10^(-16) " M"^2)/(1.995 xx 10^(-10) "M")#
#= ul"0.01995 M A"^(-)#
or