Question #a4a33
1 Answer
The added water to reach
I got
You started with
#"0.1100 mol HCl"/"L" xx ("40 mL")/("100 mL")#
#= "0.04400 M HCl" = "0.04400 M H"^(+)# since
#"HCl"# is a strong acid.
For later, we will need that the starting mols of
#"0.04400 mol/L HCl" xx 100.00 xx 10^(-3) "L"#
#= ul"0.004400 mols H"^(+)#
You're adding a strong base into it, so you just have to find how much
Obviously, if you add no
#"NaOH"# , you have not disturbed the#"HCl"# , so you can use the mols of#"HCl"# you have right now. You should then already know how much you have (this is your given).
#["H"^(+)]_1 = "0.04400 M"# Thus,
#color(blue)("pH"_1) = -log["H"^(+)]_1#
#= -log(0.04400) = color(blue)(1.36)#
Now you add
#"10.00 mL"# of#"NaOH"# . This adds
#"0.1000 mol NaOH"/cancel"L" xx 10.00 xx 10^(-3) cancel"L"#
#= "0.001000 mols NaOH" = "0.001000 mols OH"^(-)# This can then react as the limiting reactant with
#"HCl"# .#"HCl"# has one proton, and#"NaOH"# has one#"OH"^(-)# , so they react#1:1# .Thus, the mols of
#"OH"^(-)# we just got are the mols of#"H"^(+)# lost.
#"mols H"^(+) = overbrace("0.004400 mols H"^(+))^("No NaOH") - overbrace("0.001000 mols OH"^(-))^("10.00 mL NaOH")#
#= "0.003400 mols H"^(+)# and the new concentration of
#"H"^(+)# is based on the new volume.
#["H"^(+)]_2 = ("0.003400 mols H"^(+))/((100.00 + 10.00) xx 10^(-3) "L")#
#= "0.03091 M H"^(+)# and the
#"pH"# is then
#color(blue)("pH"_2) = -log["H"^(+)]_2#
#= -log(0.03091) = color(blue)(1.51)#
Hopefully you get the idea here. Now we add
#"22.00 mL"# of#"NaOH"# INSTEAD of the#"10.00 mL"# . Our final volume then becomes#"122.00 mL"# instead of#"110.00 mL"# . The mols of#"OH"^(-)# added are:
#"0.1000 mol NaOH"/cancel"L" xx 22.00 xx 10^(-3) cancel"L"#
#= "0.002200 mols OH"^(-)# And so, this neutralizes some
#"H"^(+)# (consequently consuming all the#"OH"^(-)# ) to give
#"mols H"^(+) = overbrace("0.004400 mols H"^(+))^("No NaOH") - overbrace("0.002200 mols OH"^(-))^("22.00 mL NaOH")#
#= "0.002200 mols H"^(+)# and the new concentration of
#"H"^(+)# is based on the new volume.
#["H"^(+)]_3 = ("0.002200 mols H"^(+))/((100.00 + 22.00) xx 10^(-3) "L")#
#= "0.01803 M H"^(+)# and the
#"pH"# is then
#color(blue)("pH"_3) = -log["H"^(+)]_3#
#= -log(0.01803) = color(blue)(1.74)# At this point we have reached the "half-equivalence point", i.e. we have neutralized half of the
#"HCl"# .
Same thing here, but with
#"40.00 mL"# added instead. The total volume is then#"140.00 mL"# , and the#"H"^(+)# is almost all gone.
#"0.1000 mol NaOH"/cancel"L" xx 40.00 xx 10^(-3) cancel"L"#
#= "0.004000 mols OH"^(-)# And so, this neutralizes some
#"H"^(+)# (consequently consuming all the#"OH"^(-)# ) to give
#"mols H"^(+) = overbrace("0.004400 mols H"^(+))^("No NaOH") - overbrace("0.004000 mols OH"^(-))^("40.00 mL NaOH")#
#= "0.000400 mols H"^(+)# and the new concentration of
#"H"^(+)# is based on the new volume.
#["H"^(+)]_4 = ("0.000400 mols H"^(+))/((100.00 + 40.00) xx 10^(-3) "L")#
#= "0.00286 M H"^(+)# and the
#"pH"# is then
#color(blue)("pH"_4) = -log["H"^(+)]_4#
#= -log(0.00500) = color(blue)(2.54)#