Starting with #(epsilonA_(s,r)sigma)/(rhoVc)int_(0)^(t)dt = int_(T_i)^(T) 1/(T_(sur)^4 - T^4)dT#, show that . . . ?
... show that
#t = (rhoVc)/(4epsilonA_(s,r)sigmaT_(sur)^3) {ln|(T_(sur) + T)/(T_(sur) - T)| - ln|(T_(sur) + T_i)/(T_(sur) - T_i)| + 2[arctan((T)/T_(sur)) - arctan((T_i)/T_(sur))]}#
where #(epsilonA_(s,r)sigma)/(rhoVc)# is a collection of constants.
... show that
#t = (rhoVc)/(4epsilonA_(s,r)sigmaT_(sur)^3) {ln|(T_(sur) + T)/(T_(sur) - T)| - ln|(T_(sur) + T_i)/(T_(sur) - T_i)| + 2[arctan((T)/T_(sur)) - arctan((T_i)/T_(sur))]}#
where
1 Answer
LEFT-HAND INTEGRAL
The left-hand integral is trivial, as there are a lot of constants:
#(epsilonA_(s,r)sigma)/(rhoVc)int_(0)^(t)dt = (epsilonA_(s,r)sigma)/(rhoVc) cdot t#
RIGHT-HAND INTEGRAL: PREPARATION
The right-hand integral starts as:
#int_(T_i)^(T) 1/(T_(sur)^4 - T'^4)dT'#
We wrote
#1/(T_(sur)^4 - T'^4) = 1/((T_(sur)^2 + T'^2)(T_(sur)^2 - T'^2))#
#= 1/((T_(sur)^2 + T'^2)(T_(sur) + T')(T_(sur)-T'))#
This becomes a partial fraction decomposition. We propose, at a constant surrounding temperature, the following two integrands:
#1/((T_(sur)^2 + T'^2)(T_(sur) + T')(T_(sur)-T'))#
#= overbrace((AT' + B)/((T_(sur)^2 + T'^2)))^"Integrand 1" + overbrace(C/(T_(sur) + T') + D/(T_(sur) - T'))^"Integrand 2"#
RIGHT-HAND INTEGRAL: ACQUIRING SYSTEM OF EQNS
When getting common denominators, one obtains:
#1 = (AT' + B)(T_(sur)^2 - T'^2) + C(T_(sur)^2 + T'^2)(T_(sur) - T') + D(T_(sur)^2 + T'^2)(T_(sur) + T')#
Next, simplify by distributing and re-factoring.
#1 = color(red)(AT_(sur)^2T') - color(orange)(AT'^3) + color(purple)(BT_(sur)^2) - color(cyan)(BT'^2)#
#+ color(purple)(CT_(sur)^3) - color(red)(CT_(sur)^2T') + color(cyan)(CT_(sur)T'^2) - color(orange)(CT'^3)#
#+ color(purple)(DT_(sur)^3) + color(red)(DT_(sur)^2T') + color(cyan)(DT_(sur)T'^2) + color(orange)(DT'^3)#
This regroups into a polynomial in orders of
#0T'^3 + 0T'^2 + 0T' + 1#
#= color(orange)((-A - C + D))T'^3 + color(cyan)((-B + CT_(sur) + DT_(sur)))T'^2 + color(red)((AT_(sur)^2 - CT_(sur)^2 + DT_(sur)^2))T' + color(purple)((BT_(sur)^2 + CT_(sur)^3 + DT_(sur)^3))#
As a result, we have the following system of equations (since
#-A - C + D = 0# #" "" "" "" "" "bb((1))#
#-B + CT_(sur) + DT_(sur) = 0# #" "" "bb((2))#
#A - C + D = 0# #" "" "" "" "" "" "bb((3))#
#BT_(sur)^2 + CT_(sur)^3 + DT_(sur)^3 = 1# #" "bb((4))#
RIGHT-HAND INTEGRAL: SOLVING SYSTEM OF EQNS
In solving this we could do the following.
- Since
#-A - C + D = A - C + D# , it follows that#A = -A# , which is only true if#color(green)(A = 0)# . - Therefore, from
#(1)# or#(3)# ,#C = D# , and we can solve for#B# in#(2)# .
#=> B = 2CT_(sur) = 2DT_(sur)#
- To solve for
#C# or#D# , use#(4)# :
#2CT_(sur) cdot T_(sur)^2 + CT_(sur)^3 + CT_(sur)^3 = 1#
#=> color(green)(C = 1/(4T_(sur)^3) = D)#
- Therefore,
#color(green)(B) = 2 cdot 1/(4T_(sur)^3) cdot T_(sur) = color(green)(1/(2T_(sur)^2))# .
RIGHT-HAND INTEGRAL: SETTING IT UP
This means we can insert
#1/((T_(sur)^2 + T'^2)(T_(sur) + T')(T_(sur)-T'))#
#= color(green)((1//2T_(sur)^2))/((T_(sur)^2 + T'^2)) + color(green)((1//4T_(sur)^3))/(T_(sur) + T') + color(green)((1//4T_(sur)^3))/(T_(sur) - T')#
#= overbrace(1/2 1/T_(sur)^2 1/((T_(sur)^2 + T'^2)))^"Integrand 1" + overbrace(1/4 1/T_(sur)^3 [1/(T_(sur) + T') - 1/(T_(sur) - T')])^"Integrand 2"#
The integration is now of the following:
#int_(T_i)^(T) 1/(T_(sur)^4 - T'^4)dT'#
#= overbrace(1/2 1/T_(sur)^2 int_(T_i)^(T) 1/(T_(sur)^2 + T'^2)dT')^"Integral 1" + overbrace(1/4 1/T_(sur)^3 int_(T_i)^(T) [1/(T_(sur) + T') - 1/(T_(sur) - T')]dT')^"Integral 2"#
RIGHT-HAND INTEGRAL: SOLVING IT
The second integral here is (before evaluating the integral bounds):
#color(highlight)(1/4 1/T_(sur)^3 int[1/(T_(sur) + T') - 1/(T_(sur) - T')]dT')#
#= 1/(4T_(sur)^3) [ln|T_(sur) + T'| - ln|T_(sur) - T'|]#
#= color(highlight)(1/(4T_(sur)^3) ln|(T_(sur) + T')/(T_(sur) - T')|)#
The first integral here needs to be manipulated more. Factor out a
#color(darkblue)(1/(2T_(sur)^2) int1/(T_(sur)^2 + T'^2)dT')#
#= 1/(2T_(sur)^4) int1/(1 + (T'//T_(sur))^2)dT'#
This resembles the integral of
Thus,
#=> 1/(2T_(sur)^3) int1/(1 + u^2)du#
#= 1/(2T_(sur)^3) arctanu#
#= color(darkblue)(1/(2T_(sur)^3) arctan((T')/T_(sur)))#
FORMING/SIMPLIFYING THE RESULT
Now we can combine the two overarching integrals to get:
#int_(T_i)^(T) 1/(T_(sur)^4 - T'^4)dT'#
#= {:[color(highlight)(1/(4T_(sur)^3) ln|(T_(sur) + T')/(T_(sur) - T')|) + color(darkblue)(1/(2T_(sur)^3) arctan((T')/T_(sur)))]|:}_(T_i)^(T)#
Evaluating this on the integral bounds, we get:
#= [color(highlight)(1/(4T_(sur)^3) ln|(T_(sur) + T)/(T_(sur) - T)|) + color(darkblue)(1/(2T_(sur)^3) arctan((T)/T_(sur)))] - [color(highlight)(1/(4T_(sur)^3) ln|(T_(sur) + T_i)/(T_(sur) - T_i)|) + color(darkblue)(1/(2T_(sur)^3) arctan((T_i)/T_(sur)))]#
Regroup terms to get:
#= color(highlight)(1/(4T_(sur)^3) ln|(T_(sur) + T)/(T_(sur) - T)| - 1/(4T_(sur)^3) ln|(T_(sur) + T_i)/(T_(sur) - T_i)|) + color(darkblue)(1/(2T_(sur)^3) arctan((T)/T_(sur)) - 1/(2T_(sur)^3) arctan((T_i)/T_(sur)))#
To factor this, multiply the third and fourth terms by
#= 1/(4T_(sur)^3) {color(highlight)(ln|(T_(sur) + T)/(T_(sur) - T)| - ln|(T_(sur) + T_i)/(T_(sur) - T_i)|) + color(darkblue)(2[arctan((T)/T_(sur)) - arctan((T_i)/T_(sur))])}#
FINALIZING THE RESULT
Now, we can equate this entire right-hand integral with the left-hand result we got on the first few lines:
#(epsilonA_(s,r)sigma)/(rhoVc) cdot t#
#= 1/(4T_(sur)^3) {ln|(T_(sur) + T)/(T_(sur) - T)| - ln|(T_(sur) + T_i)/(T_(sur) - T_i)| + 2[arctan((T)/T_(sur)) - arctan((T_i)/T_(sur))]}#
Multiply the left-hand constants over to get:
#color(blue)(t = (rhoVc)/(4epsilonA_(s,r)sigmaT_(sur)^3) {ln|(T_(sur) + T)/(T_(sur) - T)| - ln|(T_(sur) + T_i)/(T_(sur) - T_i)| + 2[arctan((T)/T_(sur)) - arctan((T_i)/T_(sur))]})#