What is the #"pH"# when #"50 mL"# of #"0.15 M"# #"HCl"# neutralizes an equal volume of methylamine? #K_b = 7.52 xx 10^(-4)# for methylamine.
1 Answer
I got a
At the equivalence point, the acid completely neutralizes the original form of the base (
Therefore, since
#"CH"_3"NH"_2(aq) + "HCl"(aq) -> "CH"_3"NH"_3"Cl"(aq)# ,
#"CH"_3"NH"_3"Cl"(aq) -> "CH"_3"NH"_3^(+)(aq) + "Cl"^(-)(aq)# ,
and it now acts as a weak acid in solution.
#"CH"_3"NH"_3^(+)(aq) rightleftharpoons "CH"_3"NH"_2(aq) + "H"^(+)(aq)#
#"I"" ""0.15 M"" "" "" "" "" ""0 M"" "" "" "" ""0 M"#
#"C"" "-x" "" "" "" "" "+x" "" "" "" "+x#
#"E"" "(0.15 - x) "M"" "" "x" M"" "" "" "" "x" M"#
As a result, we can then solve for the
#K_a = K_w/K_b = 10^(-14)/(7.52 xx 10^(-4))#
#= 1.33 xx 10^(-11) = x^2/(0.15 - x)#
This
#1.33 xx 10^(-11) = x^2/(0.15 - cancel(x)^"small")#
#=> x = ["H"^(+)] = ul(1.4_12 xx 10^(-6) "M")#
And that makes the
#color(blue)("pH") = -log["H"^(+)]#
#= -log(1.4_12 xx 10^(-6))#
#= 5.8_500 ~~ color(blue)(5.9)#
(where subscripts indicate digits past the last significant digit.)