What is the entropy change for 2 mols of a gas expanding from #"1 L"# to #"10 L"#?
1 Answer
You didn't mention it, so I have to assume you mean constant temperature... and I get
And if so, then we calculate
#DeltaS = int_(V_1)^(V_2) ((delS)/(delV))_TdV# ,where we consider the change in entropy due to the isothermal expansion of the gas.
The natural variables are
#dA = -SdT - PdV#
For any state function, the cross-derivatives are equal, so:
#((delS)/(delV))_T = ((delP)/(delT))_V#
Assuming an ideal gas is expanding, then we can use the ideal gas law...
#P = (nRT)/V#
Thus,
#((delP)/(delT))_V = (nR)/V((del(T))/(delT))_V = (nR)/V# ,
and
#color(green)(DeltaS) = int_(V_1)^(V_2) ((delP)/(delT))_VdV#
#= nRint_(V_1)^(V_2) 1/VdV#
#= color(green)(nRln(V_2/V_1))# .
Therefore, the change in entropy is:
#color(blue)(DeltaS) = "2 mols" cdot "8.314472 J/mol"cdot"K" cdot ln("10 L"/"1 L")#
#=# #color(blue)ul"38.3 J/K"#