Question #0c04e
1 Answer
I got
Well, you might as well multiply by the conjugate term to see what happens. I would choose this way, using
#int sqrt(1+x)/(sqrt(1-x)) cdot sqrt(1+x)/(sqrt(1+x))dx#
#= int (1+x)/sqrt(1-x^2)dx#
#= int 1/sqrt(1-x^2) + x/sqrt(1-x^2)dx#
The first integral is known to be
#u = 1-x^2#
#du = -2xdx#
And so, we divide by
#= arcsinx - 1/2 int (-2x)/sqrt(1-x^2)dx#
#= arcsinx - 1/2 int 1/sqrtudu#
#= arcsinx - 1/2 cdot 2sqrtu#
#= color(blue)(arcsinx - sqrt(1-x^2) + C)# ,#" "" "x in [-1,1)#
To show that this works, the derivative should give the original integrand.
#d/(dx)[arcsinx - sqrt(1-x^2)]#
#= 1/sqrt(1-x^2) - 1/(2sqrt(1-x^2)) cdot -2x#
#= 1/sqrt(1-x^2) + x/(sqrt(1-x^2))#
#= (1+x)/sqrt(1-x^2)#
#= (sqrt(1+x)cancelsqrt(1+x))/(sqrt((1-x)cancel((1+x)))#
#= sqrt(1+x)/sqrt(1-x)# #color(blue)(sqrt"")# ,
provided