What is the #n^(th)# derivative of # y(x) = e^x sinx #?
2 Answers
#d^n/(dx^n)[e^x sinx] = 2^(n//2)e^(x)sin(x + (npi)/4)#
#n in NN# (#n = 0, 1, 2, . . . # )
Consider that we can rewrite
#e^(pmix) = cosx pm isinx#
#=> sinx = [cosx + isinx - (cosx - isinx)]/(2i)#
#= (e^(ix) - e^(-ix))/(2i)#
This actually makes it easier to take the
#f(x) = 1/(2i)e^x(e^(ix) - e^(-ix))#
#= 1/(2i)(e^(x + ix) - e^(x - ix))#
#= 1/(2i)(e^((1 + i)x) - e^((1 - i)x))#
Now, consider the
#=> 1/(2i)(d^n)/(dx^n)[e^((1 + i)x) - e^((1 - i)x)]#
#= 1/(2i)[(1 + i)^n e^((1 + i)x) - (1 - i)^n e^((1 - i)x)]#
Then, notice how
#1 pm i = sqrt2[cos(pi/4) pm isin(pi/4)]#
Thus:
#(1 pm i)^n = 2^(n//2)[cos(pi/4) pm isin(pi/4)]^n#
#= 2^(n//2)e^(pmi npi//4)#
Therefore, we currently have:
#=> 1/(2i)[2^(n//2)e^(i npi//4) e^((1 + i)x) - 2^(n//2)e^(-i npi//4) e^((1 - i)x)]#
#= (2^(n//2))/(2i)[e^(i npi//4) e^xe^(ix) - e^(-i npi//4) e^xe^(-ix)]#
Now, factor out
#= (2^(n//2)e^x)/(2i)[e^(i npi//4) e^(ix) - e^(-i npi//4) e^(-ix)]#
Then, switch the imaginary terms back to trigonometric form using Euler's formula again, because we started in a form with all real numbers:
#= (2^(n//2)e^(x))/(2i)[(cos((npi)/4) + isin((npi)/4)) (cosx + isinx) - (cos((npi)/4) - isin((npi)/4)) (cosx - isinx)]#
Expand:
#= (2^(n//2)e^(x))/(2i)[cos((npi)/4)cos(x) + icos((npi)/4)sinx + isin((npi)/4)cosx - sin((npi)/4)sinx - (cos((npi)/4)cosx - icos((npi)/4)sinx - isin((npi)/4)cosx - sin((npi)/4)sinx)]#
Cancel out some terms:
#= (2^(n//2)e^(x))/(2i)[cancel(cos((npi)/4)cosx) + icos((npi)/4)sinx + isin((npi)/4)cosx - cancel(sin((npi)/4)sinx) - cancel(cos((npi)/4)cosx) + icos((npi)/4)sinx + isin((npi)/4)cosx + cancel(sin((npi)/4)sinx)]#
Cancel out more terms to get:
#= (2^(n//2)e^(x))/(cancel(2i))[cancel(2i)cos((npi)/4)sinx + cancel(2i)sin((npi)/4)cosx]#
Finally, use the addition identity of
#color(blue)(barul|stackrel(" ")(" "d^n/(dx^n)[e^x sinx] = 2^(n//2)e^(x)sin(x + (npi)/4)" ")|)#
# (d^(n))/(dx^n) e^xsinx = [sqrt(2)]^n e^x sin(x+(npi)/4) #
Explanation:
We have:
# y(x) = e^x sinx # ..... [A]
Differentiating wrt
# y' \ \ \ \ \= e^xcosx+e^xsinx #
# \ \ \ \ \ \ \ \ = e^x(sinx+cosx) # ..... [B]
Using the superposition property of sine and cosine, we can write the sum of '
# sinx + cosx -= Rsin(x+alpha) #
# " " = Rsinxcosalpha + Rcosxsinalpha #
# " " = Rcosalphasinx + Rsinalpha cosx#
Then equating coefficients of
# sinx: Rcosalpha = 1 # ..... [C]
# cosx: Rsinalpha = 1 # ..... [D]
# :. R^2(cos^2alpha+sin^2alpha)=1 #
# :. R=sqrt(2) #
# :. tan alpha = 1 => alpha = pi/4 #
In other words:
# sin x + cosx -= sqrt(2)sin(x+pi/4) # ..... [Theorem 1]
Hence, by Applying Theorem 1 to Eq[B] we can write the first derivative in the form:
# \ \ \ \ y' = e^xsqrt(2)sin(x+pi/4) # ..... [E]
Using [E], and differentiating again wrt
# y'' \ \ \ = e^xsqrt(2)cos(x+pi/4) + e^xsqrt(2)sin(x+pi/4) #
# \ \ \ \ \ \ \ \ = sqrt(2) \ e^x(cos(x+pi/4) + sin(x+pi/4) ) #
And applying Theorem 1 to this result we get:
# y'' \ \ \ = sqrt(2) \ e^x(cos(x+pi/4) + sin(x+pi/4) ) #
# \ \ \ \ \ \ \ \ = sqrt(2) \ e^x sqrt(2)sin(x+pi/4 + pi/4) #
# \ \ \ \ \ \ \ \ = [sqrt(2)]^2e^x sin(x+(2)pi/4 ) #
Differentiating again wrt
# y''' \ = [sqrt(2)]^2e^x sin(x+(2)pi/4 ) + [sqrt(2)]^2e^x \ cos(x+(2)pi/4 ) #
# \ \ \ \ \ \ \ \ = [sqrt(2)]^2e^x \ sqrt(2)sin(x+(2)pi/4 +pi/4 )#
# \ \ \ \ \ \ \ \ = [sqrt(2)]^3e^x sin(x+(3)pi/4)#
Prediction
Based on the above results, it "appears" as if the
# y^((n)) = [sqrt(2)]^n e^x sin(x+(npi)/4) #
So let us test this prediction using Mathematical Induction:
Induction Proof - Hypothesis
We aim to prove by Mathematical Induction that for
# (d^(n))/(dx^n) e^xsinx = y^((n)) = [sqrt(2)]^n e^x sin(x+(npi)/4) # ..... [F]
Induction Proof - Base case:
We will show that the given result, [F], holds for:
#n=0 # : (the function)
#n=1 # : (the first derivative)
When
# y^((0)) = [sqrt(2)]^0 e^x sin(x+(0pi)/4) #
# " " = e^x sin(x) #
# " " = y(x) # (from [A])
When
# y^((1)) = [sqrt(2)]^1 e^x sin(x+(1pi)/4) #
# " " = sqrt(2) e^x sin(x+pi/4) #
# " " = y' # (from [E])
So the given result is true when
Induction Proof - General Case
Now, Let us assume that the given result [F] is true when
# (d^(m))/(dx^m) e^xsinx = y^((m)) = [sqrt(2)]^m e^x sin(x+(mpi)/4) #
So, differentiating the above, using the product rule, we get:
# (d^(m+1))/(dx^(m+1)) e^xsinx = [sqrt(2)]^m e^x cos(x+(mpi)/4) + [sqrt(2)]^m e^x sin(x+(mpi)/4) #
# " " = [sqrt(2)]^m e^x [cos(x+(mpi)/4) + sin(x+(mpi)/4)] #
# " " = [sqrt(2)]^m e^x [sqrt(2)sin(x+(mpi)/4+pi/4)] # (by Theorem 1)
# " " = [sqrt(2)]^(m+1) e^x sin(x+((m+1)pi)/4)] #
Which is the given result [F] with
Induction Proof - Summary
So, we have shown that if the given result [F] is true for
Hence, by the process of mathematical induction the given result [F] is true for
Hence we have:
# (d^(n))/(dx^n) e^xsinx = y^((n)) = [sqrt(2)]^n e^x sin(x+(npi)/4) #