If #sum_k a_n = sum_k (-2n^4 + 5n^2 - 3)/(n^11 - 9n^3 - 9)# and #sum_k b_n = sum_k 1/n^beta#, then for what value of #beta# could allow #a_n/b_n# to converge?
1 Answer
I got
The limit comparison test first assumes we have two sums,
If
#lim_(n->oo) a_n/b_n = c# ,where
#c# is a finite constant,
then both series converge or both diverge. In this case, we choose (and I think your infinite sum has a typo...
#a_n = (-2n^4 + 5n^2 - 3)/(n^11 - 9n^3 - 9)#
#b_n = 1/n^beta#
What we're saying here is that if...
#c = lim_(n->oo) ((-2n^4 + 5n^2 - 3)/(n^11 - 9n^3 - 9))/(1//n^beta)#
#= lim_(n->oo) (-2n^4 + 5n^2 - 3)/(n^11 - 9n^3 - 9) cdot n^(beta)# ,
then the series converges for the appropriate exponent
So, in other words:
#lim_(n->oo) (-2n^4 + 5n^2 - 3)/(n^11 - 9n^3 - 9) = lim_(n->oo) -(2n^4)/(n^11)#
Therefore, for large
#c = lim_(n->oo) (-2n^4)/(n^11) cdot n^(beta)#
#= lim_(n->oo) (-2)/(n^7) cdot n^(beta)#
Since
#=> c = -lim_(n->oo) 2/(cancel(n^7)) cdot cancel(n^7)#
#= -2 = "finite constant"#