How do you show that #sec^2xsin^2x = sec^2x - 1#?

3 Answers
Jul 20, 2017

Use #sin^2x = 1-cos^2x# and #sec^2x = 1/cos^2x#

Jul 20, 2017

#"see explanation"#

Explanation:

#"using the "color(blue)"trigonometric identities"#

#•color(white)(x)sec^2x=tan^2x+1#

#•color(white)(x)secx=1/cosx#

#•color(white)(x)tanx=sinx/cosx#

#"consider the left side"#

#sec^2x-1=(tan^2x+1)-1#

#color(white)(sec^2x-1)=tan^2x#

#color(white)(sec^2x-1)=sin^2x/cos^2x#

#color(white)(sec^2x-1)=1/cos^2x xxsin^2x#

#color(white)(sec^2x-1)=sec^2xsin^2x="right side"#

Jul 20, 2017

As Jim H. has suggested, the fastest way is to use

#sin^2x + cos^2x = 1# #" "bb((1))#

#sec^2x = 1/cos^2x# #" "" "bb((2))#

So:

#color(blue)(sec^2xsin^2x) = sec^2x (1 - cos^2x)#
(use #(1)#)

#= sec^2x - sec^2x cdot cos^2x#
(distribute)

#= sec^2x - 1/cancel(cos^2x) cdot cancel(cos^2x)#
(use #(2)#)

#= color(blue)(sec^2x - 1)#