Prove that #cos^2xsin^2x = (1 - cos(4x))/8#?
2 Answers
It looks like you're asking why
#cos^2x sin^2x = (1 - cos(4x))/8# .
Well, here's one way to verify whether this is true or not.
Recall the following identities:
#sin^2x + cos^2x = 1# #" "bb((1))# #sin^2x = (1 - cos(2x))/2# #" "bb((2))#
Notice how the
So far... identity
#cos^2x sin^2x = (1 - sin^2x)(sin^2x)#
Using
#= (1 - (1 - cos(2x))/2)(1 - cos(2x))/2#
Getting common denominators:
#= ((1 + cos(2x))/2)((1 - cos(2x))/2)#
Multiply through for the difference of squares:
#= (1 - cos^2(2x))/4#
Use
#= (sin^2(2x))/4#
And now, recycling
#= ((1 - cos(4x))/2)/4 = (1 - cos(4x))/2 cdot 1/4#
#= color(blue)((1 - cos(4x))/8)#