Question #ce538
1 Answer
The limit differs from either side, so the limit is undefined.
graph{y = (1/x^2)/(e^(-1/x)) [-8.315, 9.47, -4.95, 3.936]}
DISCLAIMER: LONG ANSWER!
The limit originally is:
#L = lim_(x->0) (1/(x^2))/(e^(-1//x)) = lim_(x->0) 1/(x^2e^(-1//x))#
Since
#L = 1/(lim_(x->0) x^2 cdot lim_(x->0) e^(-1//x))#
The first term is easy:
#color(green)(lim_(x->0) x^2 = 0)#
(trivial)
Now for the second term.
LIMIT FROM THE LEFT SIDE
And now, we evaluate the limit from the left side of
#L_(-,e^(-1//x)) = lim_(x->0^(-)) e^(-1//x)#
#ln L_(-,e^(-1//x)) = ln[lim_(x->0^(-)) e^(-1//x)]#
This limit is continuous in the open interval before reaching
#ln L_(-,e^(-1//x)) = lim_(x->0^(-)) ln e^(-1//x)#
#= -lim_(x->0^(-)) 1/x#
#= -(-oo) = +oo#
Thus,
From this, we have the overall limit from the left side is:
#L_(-) = lim_(x->0^(-)) 1/(x^2e^(-1//x))#
#= 1/(0 cdot L_(-,e^(-1//x))) prop 1/(0*1/0) prop 0/0#
From the negative side, we can thus use L'Hopital's Rule:
#L_(-) = lim_(x->0^(-)) e^(1//x)/(x^2)#
This is going to work better if we take the
#ln L_(-) = lim_(x->0^(-)) ln (e^(1//x)/(x^2))#
#= lim_(x->0^(-)) (1/x - ln x^2)#
#= lim_(x->0^(-)) (1 - xln x^2)/x#
#= lim_(x->0^(-)) (0 - cancel(x) cdot 1/cancel(x^2) cdot 2cancel(x) + ln x^2)/1#
By the symmetry of
#ln L_(-) = lim_(x->0^(-)) (-2 + ln x^2)/1 = -oo#
Therefore,
LIMIT FROM THE RIGHT SIDE
Now for the limit from the right side of
#L_(+,e^(-1//x)) = lim_(x->0^(+)) e^(-1//x)#
#ln L_(+,e^(-1//x)) = ln[lim_(x->0^(+)) e^(-1//x)]#
As before...
#= lim_(x->0^(+)) ln e^(-1//x)#
#= -lim_(x->0^(+)) 1/x#
#= -(+oo) = -oo#
Thus,
For the overall limit from the positive side, the evaluation is much more straightforward:
#bb(L_(+)) = lim_(x->0^(+)) 1/(x^2e^(-1//x))#
#= 1/(0 cdot L_(+,e^(-1//x))) = 1/(0cdot0) = 1/0 = bb(oo)#
OVERALL LIMIT
#L_(-) = 0#
#L_(+) = +oo#
The limit from either side does not match.
Thus, the limit is undefined.