What is #int (tanx)/sqrt(sec^2x-4)dx#?
1 Answer
I got:
#int (tanx)/(sqrt(sec^2x - 4))dx = 1/2 "arc"sec(secx/2) + C#
Try multiplying by
#= int (secxtanx)/(secxsqrt(sec^2x - 4))dx#
Then, let
#= int 1/(usqrt(u^2 - 4))du#
Now this looks like a form where trig substitution would work. Let
#= int 1/(2secs*2tans)(2secstansds)#
#= 1/2 int ds = s/2#
#= 1/2 "arc"sec(u/2)#
Now, we back-substitute... Since
#= 1/2 "arc"sec(secx/2)#
Sadly, for simplifications, we cannot undo the
#color(blue)(int (tanx)/(sqrt(sec^2x - 4))dx = 1/2 "arc"sec(secx/2) + C)#
If we take the derivative, we should get the original integrand back.
#d/(dx)[1/2 "arc"sec(secx/2)] = 1/2 1/(|secx/2| sqrt((secx/2)^2 - 1)) * 1/2 secxtanx#
#= 1/4 (2secxtanx)/(|secx|sqrt(sec^2x/4 - 1))#
For
#= (tanx)/(2sqrt(sec^2x/4 - 1))#
#= (tanx)/(sqrt(4 (sec^2x/4 - 1)))#
#= (tanx)/(sqrt(sec^2x - 4))# #color(blue)(sqrt"")#