How do you integrate #tanxtan2x#?
1 Answer
I did it a bit differently, and I also got
If you're like me, and you don't remember the trig identity for
#int (sinxsin(2x))/(cosxcos(2x))dx#
#= int (sinx (2sinxcancel(cosx)))/(cancel(cosx)(cos^2x - sin^2x))dx#
#= 2 int (sin^2x)/(cos^2x - sin^2x)dx#
#= 2 int (sin^2x - cos^2x + cos^2x)/(cos^2x - sin^2x)dx#
#= 2 int -1 dx + 2 int cos^2x/(cos^2x - sin^2x)dx#
#= -2x + 2 int cos^2x/(cos^2x - sin^2x)dx#
#= -2x + 2 int 1/(1 - tan^2x)dx#
Now, let
#= -2x + 2 int 1/((1 - u^2)(1 + u^2))du#
Partial fraction decomposition gives:
#int 1/((1 - u^2)(1 + u^2))du = int A/(1 + u) + B/(1 - u) + (Cu + D)/(1 + u^2)du#
You should get:
#A = -B = -1/4# ,#C = 0# ,#D = 1/2# ,
which means:
#2int 1/((1 - u^2)(1 + u^2))du = 2[ -1/4ln|1 - u| + 1/4 ln|1 + u| + 1/2 arctan(u)]#
And our result is:
#color(blue)(int tanxtan(2x)dx) = -2x + 2[1/4ln|(1 + tanx)/(1 - tanx)| + x/2] + C#
#= color(blue)(-x + 1/2ln|(1 + tanx)/(1 - tanx)| + C)#