What is the derivative of #xlogx#?
2 Answers
Jun 15, 2017
#d/(dx)[xlogx] = log(ex)# .
Assuming you mean
#d/(dx)[log x] = d/(dx)[(logx)/(log 10)] = d/(dx)[(lnx)/(ln10)]#
#= 1/(xln10)#
Therefore, using the product rule, where
#d/(dx)[f(x)g(x)] = f(x)(dg)/(dx) + g(x)(df)/(dx)# ,
we obtain, using the derivative of
#color(blue)(d/(dx)[xlogx]) = x(d(logx))/(dx) + logx cancel((d(x))/(dx))^(1)#
#= cancel(x)/(cancel(x)ln10) + logx#
#= 1/(ln10) + logx#
#= (log e)/(log 10) + logx#
#= log e + log x#
#= color(blue)(log(ex))#
Jun 15, 2017
Explanation:
Hence
=