What is the second derivative of #x + siny = 1# in terms of #x#?
2 Answers
Explanation:
If we start by solving for
#siny = 1 - x#
#y = arcsin(1 - x)#
Now use the chain rule to find the first derivative. Let
#y' = -1 * 1/sqrt(1 - u^2)#
#y' = -1/sqrt(1 - (1 - x)^2)#
#y' = -1/sqrt(1 - (1 - 2x + x^2))#
#y' = -1/sqrt(2x - x^2)#
#y' = -(2x - x^2)^(-1/2)#
Now we can find
#y'' = 1/2(2x - x^2)^(-3/2)(2 - 2x)#
Hopefully this helps!
Here's an alternate answer for an expression in
#y'' = sec^2ytany#
#y'' = (1-x)/(2x - x^2)^"3/2"#
Given
#d/(dx)[x + siny] = d/(dx)[1]#
#=> 1 + cosy (dy)/(dx) = 0# ,remembering that
#d/(dx)[f(y)] = (df)/(dy)(dy)/(dx)# .
As a result,
#y' -= (dy)/(dx) = -1/(cosy) = -secy#
And so, the second derivative is:
#y'' -= (d^2y)/(dx^2)#
#= d/(dx)[-secy] = -secytany (dy)/(dx)#
#= -secytany (-secy)#
This gives an expression in
#=> color(green)(y'' = sec^2ytany)#
Since
#y'' = sec^2(arcsin(1-x))tan(arcsin(1-x))#
Here,
The right triangle formed from the
#(1-x)^2 + ?^2 = 1^2#
#=> |?| = sqrt(1 - (1 - x)^2) = sqrt(2x - x^2)#
This means that, since
#sec(arcsin(1-x)) = 1/(cos(arcsin(1-x))) = 1/(sqrt(2x - x^2))#
Similarly, we take the
#tan(arcsin(1-x)) = (sin(arcsin(1-x)))/(cos(arcsin(1-x)))#
#= (1-x)/sqrt(2x - x^2)#
This then gives a final expression in
#color(blue)(y'') = 1/(2x - x^2) cdot (1-x)/sqrt(2x - x^2) = color(blue)((1-x)/(2x - x^2)^"3/2")#