What is the general solution for the differential equation? #(dy)/(dx) = (3x^2 + 3cosx + 4e^3x)(y^2 + 4)#
1 Answer
Jun 14, 2017
#y_g = 2tan(2x^3 + 6sinx + 4e^3x^2 + D)#
#npi + pi/2 < 2x^3 + 6sinx + 4e^3x^2 + D < npi + (3pi)/2# ,
#n in ZZ#
For example, if
Move your
#1/(y^2 + 4)dy = (3x^2 + 3cosx + 4e^3x)dx#
Integrate to get:
#int 1/(y^2 + 4)dy = int (3x^2 + 3cosx + 4e^3x)dx#
#1/4 int 1/((y/2)^2 + 1)dy = int (3x^2 + 3cosx + 4e^3x)dx#
#1/2 arctan(y/2) = x^3 + 3sinx + 2e^3x^2 + C#
Solving for
We get a (very ugly) general solution of:
#color(blue)(y_g = 2tan(2x^3 + 6sinx + 4e^3x^2 + D))# ,
#npi + pi/2 < 2x^3 + 6sinx + 4e^3x^2 + D < npi + (3pi)/2# ,
#n in ZZ# ,where
#D = 2C# is a new arbitrary constant.