What is #int_(0)^(10) x|sinx|dx#?
1 Answer
#12pi + 10cos10 - sin10# ,
graph{x|sinx| [-0.1, 10.05, -2.92, 8]}
This may be a strange approach, but you can find all the intersections of
#xsinx = 0#
Barring
#=> x = pi, 2pi, 3pi# that are in#[0,10]# .
That means we have the following intervals to consider:
#[0,pi]# : positive integral value
#[pi,2pi]# : negative integral value
#[2pi,3pi]# : positive integral value
#[3pi,10]# : negative integral value
graph{xsinx [-0.1, 10.05, -8, 8]}
Hence:
#int_(0)^(10) x|sinx|dx#
#= int_(0)^(pi) xsinx - int_(pi)^(2pi) xsinx + int_(2pi)^(3pi) xsinx - int_(3pi)^(10) xsinxdx#
Do integration by parts once on one of these.
#int x sinxdx#
Let
#=> -xcosx + int cosxdx#
#= -xcosx + sinx#
Therefore:
#color(blue)(int_(0)^(10) x |sinx|dx)#
#= |[-xcosx + sinx]|_(0)^(pi)#
#- |[-xcosx + sinx]|_(pi)^(2pi)#
#+ |[-xcosx + sinx]|_(2pi)^(3pi)#
#- |[-xcosx + sinx]|_(3pi)^(10)#
#= ([cancel(-)picancel(cospi) + cancel(sinpi)^(0)] - [cancel(-0cos0)^(0) + cancel(sin0)^(0)]) - ([-2picancel(cos2pi) + cancel(sin2pi)^(0)] - [cancel(-)picancel(cospi) + cancel(sinpi)^(0)]) + ([cancel(-)3picancel(cos3pi) + cancel(sin3pi)^(0)] - [-2picancel(cos2pi) + cancel(sin2pi)^(0)]) - ([-10cos10 + sin10] - [cancel(-)3picancel(cos3pi) + cancel(sin3pi)^(0)])#
#= pi + 2pi + pi + 3pi + 2pi + 10cos10 - sin10 + 3pi#
#=# #color(blue)(12pi + 10cos10 - sin10)#