How do you integrate #(x^2 + 5x - 2)/(x(x^2 - 2))#?
1 Answer
#ln|x| + (5sqrt2)/4 ln |x - sqrt2|/|x + sqrt2| + C#
(Wolfram Alpha gets this too.)
Always simplify first... You'll get:
#= int cancel(x^2 - 2)/(xcancel((x^2 - 2)))dx + int (5cancel(x))/(cancel(x)(x^2 - 2))dx#
#= int 1/xdx + 5 int 1/(x^2 - 2)dx#
#= ln|x| + 5 int 1/((x + sqrt2)(x - sqrt2))dx#
Now, only the second integral needs partial fractions.
#int 1/((x + sqrt2)(x - sqrt2))dx = int A/(x + sqrt2) + B/(x - sqrt2)dx#
Get common denominators:
#(A(x - sqrt2) + B(x + sqrt2))/cancel((x + sqrt2)(x - sqrt2)) = 1/cancel((x + sqrt2)(x - sqrt2))#
Distribute and get to common polynomial form:
#Ax - Asqrt2 + Bx + Bsqrt2#
#= color(red)((A + B))x + color(green)((-A + B)sqrt2) = color(red)(0)x + color(green)(1)#
Hence, we have the system of equations:
#A + B = 0# #" "" "" "" "" "bb((1))#
#(-A + B)sqrt2 = 1# #" "" "bb((2))#
Solve
#2B = 1/sqrt2#
#=> B = 1/(2sqrt2) = sqrt2/4#
#=> A = -sqrt2/4#
Therefore, we have:
#int 1/((x + sqrt2)(x - sqrt2))dx#
#= -sqrt2/4 int 1/(x + sqrt2)dx + sqrt2/4 int 1/(x - sqrt2)dx#
#= -sqrt2/4 ln |x + sqrt2| + sqrt2/4 ln |x - sqrt2|#
And thus, the overall integral is:
#int (x^2+5x-2)/(x(x^2-2))dx#
#= ln|x| - (5sqrt2)/4 ln |x + sqrt2| + (5sqrt2)/4 ln |x - sqrt2| + C#
#= color(blue)(ln|x| + (5sqrt2)/4 ln |x - sqrt2|/|x + sqrt2| + C)#