Question #f4f41
1 Answer
Jun 7, 2017
#1/2xlnx - x/2 + C#
This should be a familiar integral if you simply recognize that
Therefore:
#int lnsqrtxdx#
#= 1/2 int lnxdx#
Now, for this, use integration by parts. Have
Let:
#u = lnx#
#du = 1/xdx#
#dv = dx#
#v = x#
Thus:
#1/2 int udv = 1/2 [uv - intvdu]#
#= 1/2 int lnxdx#
#= 1/2[xlnx - int x cdot 1/xdx]#
#= color(blue)(1/2xlnx - x/2 + C)#