Show that #(sinx)/(1 - cos2x) + (cosx)/(1 + cos2x) = (sinx+cosx)/(sin2x)#?
2 Answers
Jun 3, 2017
Try using these identities:
#sin^2x = (1 - cos2x)/2#
#cos^2x = (1 + cos2x)/2#
Then, we'd get:
#sinx/(1-cos2x) + cosx/(1+cos2x)#
#= sinx/(2sin^2x) + cosx/(2cos^2x)#
#= 1/(2sinx) + 1/(2cosx)#
We could try getting common denominators.
#= (cosx)/(2sinxcosx) + (sinx)/(2sinxcosx)#
Looks like that worked, because:
#sin2x = 2sinxcosx# .
Therefore:
#=> (sinx + cosx)/(2sinxcosx)#
#= color(blue)((sinx + cosx)/(sin2x))#
Maybe try verifying it from the right-hand side?
Jun 3, 2017
See the proof below
Explanation:
We need
Therefore,