Se #(dy)/(dx) = x^2 - 2x - 4# com a condição inicial #y(3) = -6#, resolva para #y#?
1 Answer
#y = x^3/3 - x^2 - 4x - 6#
I don't really know Portuguese but here goes.
Given:
#(dy)/(dx) = x^2 - 2x - 4#
and initial condition:
#y(3) = -6#
What we first do is separation of variables (separação de variáveis). That is, we get our
#dy = x^2 - 2x - 4dx#
Then:
#int dy = int x^2 - 2x - 4 dx#
The arbitrary integration constant (constante de integração)
#y = x^3/3 - x^2 - 4x + C#
Now we can apply the initial condition (inicial indicada) to get what the constant
#y(3) = 6#
#= (6)^3/3 - (6)^2 - 4(6) + C#
Thus:
#6 = 216/3 - 36 - 24 + C#
#=> C = -6#
Therefore:
#color(blue)(y = x^3/3 - x^2 - 4x - 6)#
CHECK
Is
#(dy)/(dx) stackrel(?" ")(=) x^2 - 2x - 4#
#= d/(dx)[x^3/3 - x^2 - 4x - 6] = x^2 - 2x - 4# #color(blue)(sqrt"")#
Is the initial condition (inicial indicada) satisfied?
#y(3) = (6)^3/3 - (6)^2 - 4(6) - 6 stackrel(?" ")(=) 6#
#= 216/3 - 36 - 24 - 6#
#= 72 - 36 - 24 - 6#
#= 6# #color(blue)(sqrt"")#