What is #lim_(x->oo) (1+x)^(1//x)#?
1 Answer
I get
Well, let
#=> L = lim_(x->oo) (1+x)^(1"/"x)#
#= lim_(u->0) (1 + 1/u)^(u)#
Since
#=> L = lim_(u->0) (1/u)^u#
This is of the form
#ln L = ln lim_(u->0) (1/u)^u#
#= lim_(u->0) u ln (1/u)#
#= lim_(u->0) (ln (1/u))/(1"/"u)#
Since this is now of the form
#ln L = lim_(u->0) (1/(1"/"u)cdotcancel(-1/u^2))/(cancel(-1/u^2))#
#= lim_(u->0) u = 0#
Therefore:
#color(blue)(L) = e^(lim_(u->0) u) = e^0#
#= color(blue)(1)#