For the function given by #f(x) = {(1, x=1),(sin(x-1), "otherwise"):}#, find the Taylor series?
1 Answer
Well, since you know that at
Therefore, all you need is the series for
The formula for Taylor series is:
#sum_(n=0)^(N) (f^((n))(a))/(n!)(x-a)^n#
So, finding
#f^((0))(x) = color(green)(f(x) = sin(x-1))#
#color(green)(f'(x) = cos(x-1))#
#color(green)(f''(x) = -sin(x-1))#
#color(green)(f'''(x) = -cos(x-1))#
#color(green)(f''''(x) = sin(x-1))#
So, writing it out:
#= (f^((0))(1))/(0!)(x-1)^0 + (f'(1))/(1!)(x-1)^1 + (f''(1))/(2!)(x-1)^2 + (f'''(1))/(3!)(x-1)^3 + (f''''(1))/(4!)(x-1)^4 + ...#
#= cancel((sin(1-1))/(0!)(x-1)^0)^(0) + cancel((cos(1-1))/(1!))^(1)(x-1)^1 + cancel((-sin(1-1))/(2!)(x-1)^2)^(0) + (-cos(1-1))/(3!)(x-1)^3 + cancel((sin(1-1))/(4!)(x-1)^4)^(0) + ...#
#= (x-1) - 1/(3!)(x-1)^3 + 1/(5!)(x-1)^5 - ...#
#= color(blue)((x-1) - 1/6(x-1)^3 + 1/(120)(x-1)^5 - ...)#
#color(blue)("for "x in (-oo,1)uu(1,oo))# (for x in the domain of
#x < 1# and#x > 1# )
The reason why