What is #lim_(x->oo) (sqrt(xsqrt(x+sqrt(x)))-sqrt(x))# ?
3 Answers
If we examine the innermost
Thus, for the left outermost term, we have:
Then, intuitively, the
Finally, we realize that
Therefore, the subtraction gives more significance to the left
Prove that
Hence:
Explanation:
When
#x+sqrt(x) > 16 + sqrt(16) = 16 + 4 = 20#
So
#sqrt(x+sqrt(x)) > sqrt(20) > 4#
So
#sqrt(x sqrt(x+sqrt(x))) > sqrt(4x) = 2sqrt(x)#
So
#sqrt(x sqrt(x+sqrt(x))) - sqrt(x) > 2sqrt(x) - sqrt(x) = sqrt(x)#
As
So
#sqrt(x sqrt(x+sqrt(x))) - sqrt(x) -> oo#
And, here's another solution.
Explanation:
# = sqrtx sqrt((sqrt(x+sqrt(x)))) - sqrtx * 1#
# = sqrtx (sqrtsqrt(x+sqrt(x)) - 1)#
# = sqrtx (root(4)(x+sqrt(x)) - 1)#
As
#= (lim_(xrarroo)sqrtx)(lim_(xrarroo)(root(4)(x+sqrt(x)) - 1)#
# = oo*oo=oo#