How do you solve for #q#? #4log_p 3 + 2 log_p 2 - log_q 144 = 2#

Please do this in two ways.

1 Answer
Jun 4, 2015

You can use properties of logarithms to simplify this, but there may be multiple ways to express this.

#4log_p3 + 2log_p2 - log_q144 = 2#

Add/Subtract:
#4log_p3 + 2log_p2 - 2 = log_q144#

Change of Base Law:
#(4(ln 3))/(ln p) + (2(ln 2))/(ln p) - 2 = (ln 144)/(ln q)#

Factor:
#(2/lnp)[2ln 3 + ln 2] - 2 = (ln 144)/(ln q)#

Multiply/Divide:
#(ln 144)/{(2/lnp)[2ln 3 + ln 2] - 2} = ln q#

Raise #e# to both sides:
#q = e^[(ln 144)/{(2/lnp)[2ln 3 + ln 2] - 2}] #


#4log_p3 + 2log_p2 - log_q144 = 2#

Add/Subtract:
#4log_p3 + 2log_p2 - 2 = log_q144#

Change of Base Law:
#(4(ln 3))/(ln p) + (2(ln 2))/(ln p) - 2 = (ln 144)/(ln q)#

#[4ln 3 + 2ln 2]/(ln p) - 2 = (ln 144)/(ln q)#

Multiply by #lnplnq#, factor out #lnq#:
#lnq([4ln 3 + 2ln 2] - 2lnp) = (ln 144)(lnp)#

Divide:
#lnq = [(ln 144)(lnp)]/([4ln 3 + 2ln 2] - 2lnp)#

Raise #e# to both sides:
#q = e^{[(ln 144)(lnp)]/([4ln 3 + 2ln 2] - 2lnp)}#


If you raise the first answer to #(lnp)/(lnp)# and multiply in the #2#, they're equivalent answers.